
FlexDoc: Flexible Document Adaptation through
Optimizing both Content and Layout

Yue Jiang∗, Christof Lutteroth†, Rajiv Jain‡, Christopher Tensmeyer‡,
Varun Manjunatha‡, Wolfgang Stuerzlinger§, Vlad I. Morariu‡

∗Aalto University, Espoo, Finland, yue.jiang@aalto.fi
†University of Bath, Bath, United Kingdom, cl2073@bath.ac.uk

‡Adobe Research, College Park, United States, {rajijain, tensmeye, vmanjuna, morariu}@adobe.com
§Simon Fraser University, Vancouver, Canada, w.s@sfu.ca

Abstract—Designing adaptive documents that are visually
appealing across various devices and for diverse viewers is a
challenging task. This is due to the wide variety of devices and
different viewer requirements and preferences. Alterations to a
document’s content, style, or layout often necessitate numerous
adjustments, potentially leading to a complete layout redesign.
We introduce FLEXDOC, a framework for creating and consum-
ing documents that seamlessly adapt to different devices, author,
and viewer preferences and interactions. It eliminates the need to
manually create multiple document layouts, as FLEXDOC enables
authors to define desired document properties using templates
and employs both discrete and continuous optimization in a novel
comprehensive optimization process, which leverages automatic
text summarization and image carving techniques to adapt both
layout and content during consumption dynamically. Further, we
demonstrate FLEXDOC in real-world scenarios.

I. INTRODUCTION

Document layout is important for effective information con-
sumption in applications ranging from print media to digital
forms such as web pages and interactive news readers. As
device variety increases, a single document needs to adapt
to different screen sizes, orientations, and aspect ratios. This
variety also increases the effort for document authors and
personalization for individual viewers.

Existing commercial document creation tools have limita-
tions in generating adaptive documents (Table I). These arise
from system designs being focused on layout capabilities, an
author’s capabilities, such as being able to code, and a viewer’s
options during consumption. From a system perspective, exist-
ing tools necessitate manually defined breakpoints or coding
to create multiple versions. For instance, Adobe Acrobat
Liquid Mode reflows documents to a single-column format
but does not generate multi-column formats, and images on
smaller screens shrink instead of reflowing. Similarly, CSS
struggles with adaptive multi-column layouts and requires
specific configurations, such as a fluid grid, to facilitate image
flows. Authors using these tools typically need to code and/or
manually set breakpoints for diverse layout sizes. Tools like
Webflow eliminate coding but still require authors to set
breakpoints and lack support for image flows.

Prior work proposed optimization for generating responsive
documents without coding or breakpoints. Table I lists the

*This work was done in part while the first author was an intern at Adobe.

most related work. Some work [1]–[6] used pre-defined al-
ternatives for optimization requiring authors to craft multiple
versions of the same content. Such manual specification makes
it hard to deal with a whole collection of documents and
lacks content personalization; once the document design is
finalized, the content remains fixed. Laine et al. [7] enabled
some personalization by allowing viewers to select important
elements displayed in a larger format, but their approach could
not alter the layout structure, only adjusting element sizes.

We propose FLEXDOC, a novel approach for dynamically
adapting documents to different screen sizes, and author and
viewer preferences. Combining discrete and continuous opti-
mization, FLEXDOC creates documents with flexible layouts
and adaptive content. Our system applies image and natural
language processing techniques to automatically generate con-
tent variations, such as images of varying sizes and aspect
ratios and text summaries of varying lengths. For authors,
FLEXDOC offers flexible templates editable interactively with-
out coding or specifying breakpoints. For viewers, FLEXDOC
enables interactive adaptation of document layout and content
for optimal consumption. We evaluate FLEXDOC with the
following research questions: RQ1) Do viewers benefit from
interactive adapted content at viewing time according to their
preferences? and RQ2) Do authors benefit from document
adaptations with layout and content alternatives? Our findings
show that document authors can use FLEXDOC to edit layout
templates while maintaining readability, and viewers benefit
from dynamic documents adapting to their preferences. We
present the following main contributions:

1) A novel method for generating and optimizing dynamic
content and layout to interactively adapt a document to
various devices, author preferences, and viewer prefer-
ences. Both authors and viewers can influence the layout
and content shown in a document.

2) An optimization approach that combines both discrete
and continuous optimization of global properties, such
as layout and aesthetics, and local properties, such as
information loss, content preferences, and interactive
adjustments in the level of detail.

3) A demonstration within application scenarios, showing
that FLEXDOC supports an immersive and interactive

1

Functionality FLEXDOC Acrobat Liquid CSS Webflow

System
Adaptive content ✓ ✗ ✗ ✗
Image flow ✓ ✗ ✶ ✗
Adaptive multi-column ✓ ✗ ✗ ✓

Author No breakpoints required ✓ ✓ ✗ ✗
No Need to Code ✓ ✓ ✗ ✓

Viewer Viewer preferences ✓ ✗ ✗ ✗

TABLE I: Comparative analysis of FLEXDOC and existing
commercial document tools regarding document adaptation
capabilities from system, author, and viewer perspectives. ‘✓’
and ‘✗’ indicate the presence and absence of functionality. ‘✶’
denotes functionality achievable through coding.

Functionality FLEXDOC O’Donovan et al. Borning et al. Laine et al.

Author

No need to create all alter-
natives manually ✓ ✗ ✗ ✓

No need to modify low-
level constraints ✓ ✓ ✗ ✓

No image distortion ✓ ✓ ✓ ✗

Viewer

Viewer preferences ✓ ✗ ✓ ✓
No need to modify low-
level constraints ✓ ✓ ✗ ✓

Layout modification ✓ ✗ ✗ ✗

TABLE II: Comparative analysis of FLEXDOC and existing
document tools from prior research regarding their ability to
adapt documents to various authors’ and viewers’ preferences.
’✓’ and ’✗’ indicate the presence and absence of functionality.

approach for reading documents.

II. DOCUMENT OPTIMIZATION

Designing an adaptive document involves optimizing con-
tent and layout to fit screen properties, author preferences, and
viewer preferences. This requires numerous element-specific
and layout-related decisions. To realize such functionality,
we formulate the document optimization problem as a joint
discrete and continuous optimization process. Implementation
details are available in the supplementary materials.

A. Problem Formulation

We define the document problem as an optimization prob-
lem, where we decide on the positions and sizes of document
elements, denoted as ei = (xi, yi, wi, hi). Here, xi and yi
represent the coordinates of the top-left corner of the i-
th element, and wi and hi represent its width and height,
respectively. We focus on rectangular or rectangular bounding
box elements without considering hierarchies.

We now define a continuous loss term Lcont and the discrete
loss term Ldisc. The continuous loss term focuses on screen
and element properties, such as element sizes and overall
aesthetics; the discrete loss term focuses on author and viewer
preferences. The overall objective function is as follows:

L(ê1, ê2, ..., êN , ep1, ep2, ..., epN ;Wcont,Wdisc)

= Lcont(ê1, ê2, ..., êN , ep1, ep2, ..., epN ;Wcont)

+ Ldisc(ê1, ê2, ..., êN ;Wdisc),

(1)

where N denotes the total number of elements, êi =
(x̂i, ŷi, ŵi, ĥi) represent the predicted position and size of
each GUI element, and epi = (xpi, ypi, wpi, hpi) denote the
preferred element positions and sizes. Wcont is a set of
weights assigned to specific continuous properties, and Wdisc

consists of weights associated with discrete properties. We
then minimize the objective function to optimize the positions
and sizes of document elements:

{ê1, ê2, ..., êN}∗ = argmin{ê1,ê2,...,êN}

L(ê1, ê2, ..., êN ;Wcont,Wdisc).
(2)

B. Continuous Loss Term

The continuous loss term Lcont specifies the relationship
between elements and their properties. Here, we include image
loss Limg, text loss Ltext, and alignment loss Lalign:

Lcont(ê1, ê2, ..., êN , ep1, ep2, ..., epN ;Wcont)

= wimgLimg +wtextLtext +walignLalign,
(3)

where Wcont = {wimg,wtext,walign} are the weights for
images, texts, and alignments, currently set to 1.

1) Image Loss: To optimize an image, we penalize devia-
tions from its preferred size (size loss) and aspect ratio (aspect
ratio loss). Directly using the difference in image area is not
advisable since it can significantly distort the image.

2) Text Loss: We penalize text that is too small to read by
considering its size deficit, i.e., by how much its font size f̂i
is smaller than the viewer’s preferred font size fpi. If the text
size exceeds the preferred font size, the size deficit is 0. Our
system can dynamically generate shortened versions of text to
better fit the document. In such cases, we further penalize text
changes if the shortened version is used.

3) Alignment Loss: We use a measure of the overall aes-
thetic of a layout based on established visual principles [8].
This overall aesthetics loss term could be easily extended to
consider additional aesthetic principles.

C. Discrete Loss Term

The discrete loss term Ldisc involves the selection of tem-
plates and individual content alternatives. For each element
ei, if the viewer has no specific preference, the discrete loss
for this element is determined by the author preference loss,
Lauthor,i. When the viewer indicates their preferences without
interacting directly, the discrete loss shifts to the viewer
preference loss, Lviewer,i. However, if the viewer actively
interacts with the content, the discrete loss is governed by
the viewer interaction loss, Lint,i, ensuring that the content
dynamically adjusts to their direct input.

Ldisc(ê1, ê2, ..., êN ;Wdisc)

=
∑
i

wauthor,iLauthor,i +wviewer,iLviewer,i +wint,iLint,i,

(4)

where one of {wauthor,i, wviewer,i, wint,i} is 1 and the
other two are 0, depending on whether the viewer sets their
preferences or interacts with the content.

2

Fig. 1: a) FLEXDOC adapts a news page on a mobile phone to provide a compact overview with quick access to audio content
for each article, based on viewer preferences (sliders below images), which prioritize audio content over images and text here.
b) The same news page adapted for a tablet device with a user preference for image content. c) As the viewer ‘pins’ the
COVID article and ‘zooms in’ on the Mars article, FLEXDOC rearranges the layout accordingly, keeping the pinned article in
place. d) As the viewer ‘zooms in’ on the blue text paragraph in the previous image with a preference for avoiding scrolling,
FLEXDOC extends the paragraph to provide more details and crops the top image, avoiding the need for scrolling1.

1) Author Preference Loss: Document authors can define
alternatives for both layout templates and content, each as-
signed preference ranks. Higher loss values are assigned to
lower-ranked templates. Specifically, the m-th ranked template
is assigned a loss value of −1000 · (M + 1−m), prioritizing
more preferred templates, where M is the number of template
alternatives. This approach creates a gradient of loss values
across ranks, allowing for optimization within a template
before transitioning to another.

2) Viewer Preferences: Viewer preferences have higher
priorities than those specified by authors, as the end goal of
our approach is to enhance the viewing experience. As shown
in Figure 1, viewers can adjust their preferences with the
sliders. For example, if the viewer increases their preference
for “images” using the corresponding slider, the loss value of
all other alternatives will be decreased so that images are more
likely to be chosen.

3) Viewer Interactions: FLEXDOC can dynamically change
the screen’s content in response to viewer interactions. Viewer
interactions are given the highest priority since they represent
direct requests from the user. Thus, if the viewer chooses a
specific template or content alternative through an interaction,
that alternative must be selected unless no solution exists.
Other contents are then optimized accordingly.

D. Dynamic Content Generation

Given a screen/window size, we optimize the positions
and sizes of elements and alternative selection. However,
fitting content into a layout is often challenging, especially for
smaller screen sizes. To accommodate the diversity of screen
sizes and document author and viewer preferences, FLEXDOC
dynamically selects or generates alternative content. It applies
seam carving for image adaptation and BERT-based text
summarization for variable-sized texts. It then optimizes across
the potential alternatives with the given screen size and viewer
preferences. Further details are in the supplementary materials.

1Image credits: Production Perig/stock.adobe.com and NASA/JPL-Caltech

III. DOCUMENT AUTHORING AND VIEWING

FLEXDOC optimizes the document based on the screen
properties, author preferences, and viewer preferences. Au-
thors can define their content preferences using FLEXDO-
CEDITOR, a graphical document template editor. This editor
allows authors to guide the optimization process by providing
different layout templates, content alternatives, and preference
rankings. Subsequently, the document can then be optimized
based on the screen size and author preferences. On the other
hand, viewers can also adapt a document by selecting different
layout templates or adjusting their preferences via simple
operations. Once the screen size changes and/or the viewer
changes their preferences, the document can adapt accordingly.
More details are in the supplementary materials.

IV. APPLICATIONS

We demonstrate FLEXDOC in multiple real-world applica-
tion scenarios. Here, we show an example of news reading.
Other examples are in the supplementary materials.

Viewers have different preferences for news consumption,
based on personal interests and desired levels of detail.
Modern news websites use location and browsing history
to recommend and preview news items on the front page.
These previews typically highlight critical information within a
concise format, without comprehensive details and background
context. Further, individual news items often mention only the
latest events without reference to previous news messages in
the series or background information. This requires viewers
who want more detail or background information to search for
related documents or follow links provided in the document
they are reading. Instead of redirecting to other documents,
viewers could be better served by extending the document
(using content from related articles, not AI-generated ones)
they are reading based on their needs, generating more detailed
information within the document.

1) Front Page Optimization: News front pages constantly
update with the latest news, which can replace older items and

3

Fig. 2: Document optimization results: a) The author defines three templates. FLEXDOC optimizes tabstop positions based on
the objective function. b) Document results when the viewer prefers the first or second template, respectively. c) Results on
different devices, which balance both layout structure and the amount of content.

give viewers access to previous articles. Allowing viewers to
“pin” their interests, like stock market or COVID-19 news,
with FLEXDOC enables continuous access to related updates.

FLEXDOC enables viewers to adapt a news front page to
their individual preferences (Figure 1a and b). Viewers can
choose preferred modalities and detail levels, and ‘pin’ items
of interest in place. This approach gives freedom to both
authors and viewers, influencing the final content and layout.
Authors benefit from FLEXDOC automating much of the doc-
ument adaptation work. Authors predefine layout and content
alternatives, allowing viewers to finalize choices. Viewers can
adjust reading preferences interactively, like ‘zooming in’ on
specific news without losing the overall context of the news
front page (Figure 1c).

2) Dynamic Documents: FLEXDOC aims to generate differ-
ent aesthetically pleasing document alternatives automatically
and dynamically based on a viewer’s personal preferences. Un-
like news recommendation websites like Google News, which
essentially only reorder news items based on viewer interests,

FLEXDOC enhances the reading experience by dynamically
extending and shortening document content on demand. For
instance, a viewer can ‘zoom in’ on a part of an article to get
more detail, and FLEXDOC then automatically re-optimizes
the layout to accommodate this extra detail (Figure 1d).

V. EVALUATION

To understand the benefits and challenges of FLEXDOC, we
examine how different users might use FLEXDOC from both
author and viewer perspectives.

1) Participants: We interviewed 13 interface designers
(6M, 7F) including 10 Professional Designers with over 2
years of professional UI/UX design experience in industry or
research labs; and 3 Non-Professional Designers who are HCI
graduate students with some interface prototyping experience.
Five participants were interviewed in person, and the others
were interviewed remotely through video conferencing.

2) Materials: Participants used laptops for authoring doc-
uments with FLEXDOCEDITOR and for viewing them.

4

3) Experiment Design: The study used a within-subject
design, requiring participants to compare the use of FLEXDOC
and the existing document tools they normally use.

4) Procedure: After explaining the basic ideas of FLEX-
DOC, participants could experience FLEXDOC from both the
author’s and the viewer’s perspectives through three tasks: a)
Participants used the FLEXDOCEDITOR to create a news web-
site resembling Figure 1. They then interacted with the created
news website and compared it with their experience using
other news websites like Google News. b) Participants used
FLEXDOCEDITOR to create their own document templates
and assigned content, observing how FLEXDOC adapts these
documents to different devices and viewer-preferred templates.
They then compared FLEXDOC with their usual design tools
for document creation. c) Focusing on the viewer’s perspective,
participants experienced how FLEXDOC adapts a draft of
the FLEXDOC paper to different devices and formats. They
compared this with their previous experience of reading papers
or similar documents on different devices.

5) Findings: We perform qualitative analysis from both the
author’s and viewer’s perspectives.

RQ1: Do viewers benefit from interactive adapted content
at viewing time according to their preferences?

Viewers benefit from the dynamic content generation. Par-
ticipants were most excited by the dynamic level of detail
provided, which facilitated easier access to desired content.
(“It happened a lot that right after I opened the news article,
I realized that I am not interested []. I really like the idea
of showing [something like an] abstract before opening the
article.” (P1), “I can get the suitable amount of information I
need. It will save me a lot of time.” (P6), “see the summary
and being able to hop around” (P13)).

Flexibility to adapt to different devices and viewer prefer-
ences. The second-most mentioned advantage of FLEXDOC
was its ability to adjust the document layout to different de-
vices (“Everything becomes almost unreadable on my phone.
This image reflow function solves the problem.” (P6), “Google
News is not optimized very well for mobile devices” (P3)). In
summary, all participants identified tangible benefits due to
their flexible reading experience with FLEXDOC.

RQ2: Do authors benefit from document adaptations with
layout and content alternatives?

Reduced design effort to create responsive documents. Most
participants emphasized that designing content for a variety
of formats and sizes is a common requirement today (“In
the future of digital publishing authors cannot account for all
the screen sizes they need to account for, and designers are
pressured to produce content for more and more different sur-
faces” (P11)). Some participants noted that FLEXDOCEDITOR
offers greater capabilities compared to their current design
tools, particularly in providing flexible layouts for different
devices (“XD does this in a simplistic way, which is more
about devices... [FLEXDOC] is much more powerful” (P11)).
Despite the added authoring complexity, participants found
FLEXDOCEDITOR fairly easy to use (“For people who are
not a software developer, the template creation looks intuitive

and easy to do.” (P5)). They appreciated how it allowed
them to work at a higher level of abstraction in designing
document layouts(“Designers often cannot think about the
overall layout. Designers mostly focus on the component
perspective and often ignore the overall layout. This system
fills [] this gap.” (P4), “don’t need to get to be too specific
about something like alignment. I think alignment is generally
time-consuming to deal with ... spent so much time on those
small issues. So I think this system can help them avoid
those issues. It is good for overall responsive, adaptive layout
creation.” (P6)). Furthermore, many participants recognized
that templates could save them time: “I think this kind of
templates help me solve the alignment issue. I think it can
significantly reduce the design effort.” (P4), “I hope to have
some predefined templates so that I don’t need to think about
how to design the template myself.” (P1), and “The general
idea of using templates is cool and very convenient.” (P2). This
overall positive reception indicates that participants recognized
the benefits that FLEXDOC can provide for document authors
and that they valued the ease of creating adaptive content.

Lack of functionality to preview resize behaviors. Some
participants noted that while it was fairly easy to create flexible
documents, it was less straightforward to understand their
layout resize behavior across the many possible sizes (“from
the designer’s point of view you almost need a simulator to
show me what my design is going to look like...you can’t show
me everything...the challenges is do the designers have the
ability to preview the results” (P11)).

Template editing can be challenging for less experienced
designers. Some participants mentioned that editing FLEXDOC
templates might require technical expertise that not every
designer had (“would probably be intimidating for an everyday
commonplace user, so being able to make it less technical
looking might help” (P12), “There are many different layout
problems that can come up with this, so just the interactions
with those decisions might require more testing” (P11)).

VI. DISCUSSION AND FUTURE WORK

Our FLEXDOC approach dynamically optimizes document
structure and content to adapt to various devices and user
preferences. Applicable to a wide range of document-centric
applications, FLEXDOC enhances both reading and authoring
experiences. Designers can use FLEXDOCEDITOR to create
flexible layouts that ensure readability across different use
cases. FLEXDOC generates suitable versions of images and
text to fit these layouts and can adapt UIs interactively in
under half a second on an Intel i5 laptop. It can be applied to
any PDF or webpage by detecting element types and bounding
boxes using document object detection methods [9].

FLEXDOC does not currently consider semantic relation-
ships or hierarchy among document elements, nor handles
elements with irregular boundaries. Future work could extend
to elements with irregular boundaries and optimize based on
document semantics. Additionally, the lack of standard metrics
for evaluating adaptive UIs makes quantitative comparison
difficult. Future work can establish such metrics.

5

REFERENCES

[1] P. O’Donovan, A. Agarwala, and A. Hertzmann, “Learning layouts for
single-pagegraphic designs,” IEEE Transactions on Visualization and
Computer Graphics, vol. 20, no. 8, pp. 1200–1213, 2014.

[2] P. O’Donovan, A. Agarwala, and A. Hertzmann, “Designscape: Design
with interactive layout suggestions,” in Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems, CHI ’15,
(New York, NY, USA), p. 1221–1224, Association for Computing Ma-
chinery, 2015.

[3] C. Domshlak, R. I. Brafman, and S. E. Shimony, “Preference-based con-
figuration of web page content,” in Proceedings of the 17th International
Joint Conference on Artificial Intelligence - Volume 2, IJCAI’01, (San
Francisco, CA, USA), p. 1451–1456, Morgan Kaufmann Publishers Inc.,
2001.

[4] E. Marcotte, Responsive Web Design. A book apart, 2011.
[5] M. Nebeling and M. C. Norrie, “Responsive design and development:

Methods, technologies and current issues,” in Proceedings of the 13th
International Conference on Web Engineering, ICWE’13, (Berlin, Hei-
delberg), p. 510–513, Springer-Verlag, 2013.

[6] C. Jacobs, W. Li, and D. H. Salesin, “Adaptive document layout via man-
ifold content,” in Proceedings of Workshop on Web Document Analysis,
pp. 1–4, 2003.

[7] M. Laine, Y. Zhang, S. Santala, J. P. P. Jokinen, and A. Oulasvirta,
“Responsive and personalized web layouts with integer programming,”
Proc. ACM Hum.-Comput. Interact., vol. 5, May 2021.

[8] D. Schölgens, S. Müller, C. Bauer, R. Tilly, and D. Schoder, “Aesthetic
measures for document layouts: Operationalization and analysis in the
context of marketing brochures,” in Proceedings of the 2016 ACM
Symposium on Document Engineering, DocEng ’16, (New York, NY,
USA), p. 21–30, Association for Computing Machinery, 2016.

[9] K. Li, C. Wigington, C. Tensmeyer, H. Zhao, N. Barmpalios, V. I.
Morariu, V. Manjunatha, T. Sun, and Y. Fu, “Cross-domain document
object detection: Benchmark suite and method,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12915–12924, 2020.

6

FlexDoc: Flexible Document Adaptation through
Optimizing both Content and Layout

(Supplementary Materials)
Yue Jiang∗, Christof Lutteroth†, Rajiv Jain‡, Christopher Tensmeyer‡,

Varun Manjunatha‡, Wolfgang Stuerzlinger§, Vlad I. Morariu‡
∗Aalto University, Espoo, Finland, yue.jiang@aalto.fi

†University of Bath, Bath, United Kingdom, cl2073@bath.ac.uk
‡Adobe Research, College Park, United States, {rajijain, tensmeye, vmanjuna, morariu}@adobe.com

§Simon Fraser University, Vancouver, Canada, w.s@sfu.ca

Abstract—In these supplementary materials, we review related
work, mention implementation details of the document optimiza-
tion process, dynamic content generation, and the document
authoring and viewing interfaces. We also present applications,
use cases, and qualitative comparisons to previous methods.
Additionally, we discuss the limitations and future work in more
detail.

I. RELATED WORK

A. Layout Alternatives and Customized Layout Generation
Previous work has proposed optimization-based approaches

for customized layout generation to improve the viewer ex-
perience across different screen sizes and viewer require-
ments [1]–[8]. SUPPLE [9], [10] automatically optimized
user interfaces by applying alternative widgets or groupings
to accommodate screen-size constraints and customize user
interfaces for people with disabilities [11]. Personalization
was further improved by specifying a cost function to meet
users’ preferences and target devices [12] and maintaining
consistency [13]. Arnauld [14] generated optimized param-
eters for layouts based on a cost function, resulting in more
optimal document layouts. Recent work has explored layout
design using program synthesis techniques. Scout [15] enabled
designers to explore alternatives and receive design feedback
by generating potential layouts based on user-provided high-
level constraints. Yet, Scout only provided fixed-size layout
suggestions without dynamic resize behaviors nor guaranteed
diverse results. InferUI [16] inferred constraints to describe
a layout from layout examples, but only with linear con-
straints expressing relative mutual alignments of widgets and
a single topological arrangement. It could not handle dynamic
topological layouts such as flows and alternative positions. In
contrast, FLEXDOC can handle layouts containing textflows
with proper resize behaviors and dynamic topology and can
adapt the document to screen size and viewer preferences.

B. Adaptive Documents
Early document layout builders focused on document archi-

tecture and formatting to arrange text into lines, paragraphs,

*This work was done in part while the first author was an intern at Adobe.

and other high-level structures [17]–[19]. LaTeX uses a dy-
namic programming approach to solve the problem of breaking
a paragraph into lines [20]. Later work generated adaptive web
and document layouts by varying document representations.
Chen et al. [21] proposed adapting web pages for small
screen devices by dividing the original page into smaller
blocks. Xie et al. [22] presented a novel tree representation
for displaying documents on various screens. FrameKit [23]
generates resizable UIs via keyframe interpolation. Domshlak
et al. [24] proposed a system for personalized presentation and
a preference-based configuration process for web pages. Their
approaches also optimized the selection of document content
alternatives based on the author’s and the viewer’s preferences.
However, all the alternatives were discrete and predefined.
In contrast, in addition to predefined content alternatives,
FLEXDOC can automatically generate new ones and further
optimize the selected alternatives to fit better into the space
available for the document in the current context.

Recent document layout generation research used deep
learning approaches to avoid manually defining constraints
and templates. LayoutGAN [25] proposed a generative model
to place graphics elements into a document layout. Layout-
GAN++ [26] improved the generative layout model with trans-
former blocks and latent space exploration. Zheng et al. [27]
added a content-awareness factor to generate document layouts
based on the document topics. Neural Design Network [28]
generated document layouts via deep learning networks to
produce layouts that follow given constraints. However, deep
learning approaches can only produce the document styles
represented in their training data, which typically biases their
outputs. Furthermore, they give authors less control over the
generated documents and cannot generate documents that
adapt dynamically, i.e., to the current window/screen size.
In contrast, FLEXDOC gives control over the documents to
both authors and viewers and, at the same time, automatically
generates proper text and images to fit the screen better.

1

C. Constraint-based Resizable Layout

The need for resizable layouts is driven by the vast diversity
of screen sizes and aspect ratios of current devices and the
ability of desktop graphical user interfaces to resize windows
interactively. While early layout models such as group, grid,
table, and grid-bag layouts [29]–[31] provided basic function-
ality, more recent constraint-based layout models [32], [33]
offer advanced options for generating resizable and respon-
sive layouts [34]–[37]. Recent work on a more expressive
layout model for graphical user interfaces (GUIs), called ORC
Layout [38], unifies flow layouts and conventional constraint-
based layouts through OR-constraints (ORC). OR-constraints
are a combination of hard and soft constraints, where the entire
OR-constraint is a hard constraint, and each disjunctive part is
a soft constraint. This allows for the definition of alternatives
for layout components, enabling a single layout specification
to create adaptive layouts for a wide range of screen sizes,
orientations, and aspect ratios. ORC layout specifications for
GUIs can be efficiently solved using ORCSolver [39] and
reverse-engineered from interfaces through ReverseORC [40].
FLEXDOC applies OR-constraints to optimize the layout of
adaptive documents, combined with methods for generating
content alternatives, to jointly optimize layout and content.

II. DOCUMENT OPTIMIZATION

Designing an adaptive document involves optimizing both
content and layout to fit the screen’s properties, author pref-
erences, and viewer preferences. Our objective is to provide
a comprehensive method that considers all these aspects. This
involves making a large number of both element-specific
and layout-related decisions. To achieve this, we formulate
the document optimization problem as a joint discrete and
continuous optimization process.

A. Problem Formulation

We define the document problem as an optimization prob-
lem. With this formulation, we decide on the positions and
sizes of document elements (denoted as ei = (xi, yi, wi, hi),
where the coordinates (xi, yi) represent the top-left corner of
the i-th element and (wi, hi) represents its width and height),
along with the layout of the document. Here, we focus on a
setting where all the elements are rectangular or in rectangular
bounding boxes, and we do not consider hierarchies.

We define two objective terms: the continuous loss term
Lcont and the discrete loss term Ldisc. The continuous loss term
focuses on the screen and element properties, such as element
sizes and overall aesthetics; the discrete loss term focuses more
on the author preferences and viewer preferences. The overall
objective function is defined as follows:

L(ê1, ê2, ..., êN , ep1, ep2, ..., epN ;Wcont,Wdisc)

= Lcont(ê1, ê2, ..., êN , ep1, ep2, ..., epN ;Wcont)

+ Ldisc(ê1, ê2, ..., êN ;Wdisc),

(1)

where the total number of elements is N , the predicted
position and size of each GUI element as êi = (x̂i, ŷi, ŵi, ĥi),

and the preferred element positions and sizes are represented
by epi = (xpi, ypi, wpi, hpi). Wcont is a set of weights
assigned to specific continuous properties, and Wdisc consists
of weights associated with individual discrete properties.

We then minimize the objective function to optimize the
positions and sizes of document elements. The optimization
process can be represented as

{ê1, ê2, ..., êN}∗ = argmin{ê1,ê2,...,êN}

L(ê1, ê2, ..., êN ;Wcont,Wdisc).
(2)

B. Continuous Loss Term

The continuous loss term Lcont addresses the relationship
between elements and their properties. Here, we include image
loss Limg, text loss Ltext, and alignment loss Lalign:

Lcont(ê1, ê2, ..., êN , ep1, ep2, ..., epN ;Wcont)

= wimgLimg +wtextLtext +walignLalign,
(3)

where Wcont = {wimg,wtext,walign} are the weights for
images, texts, and alignments. We currently set all these to 1.

1) Image Loss: To optimize an image, we penalize devi-
ations from an image’s preferred size (size loss) and aspect
ratio (aspect ratio loss). We cannot use the difference in image
area directly since this can significantly distort the image by
changing its aspect ratio. Thus, we measure image size only
based on the difference in size in each dimension. Hence, we
define image size loss Ls as

Ls =
1

Nimg

Nimg∑
i=1

|ŵi − wpi|2 +
1

Nimg

Nimg∑
i=1

|ĥi − hpi|2, (4)

where Nimg is the number of images.
Aspect ratio is another important measure for images,

defined as w/h. The ideal situation is to maintain the same
aspect ratio as for the preferred size, i.e., ŵi/ĥi = wpi/hpi,
which is equivalent to ŵi · hpi = ĥi · wpi. Hence, we define
the aspect ratio loss Lar as

Lar =
1

Nimg

Nimg∑
i=1

|ŵi · hpi − ĥi · wpi|2. (5)

The final image loss is the sum of the size and aspect ratio
loss terms. Limg = Ls + Lar.

2) Text Loss: We penalize text that is too small to read
by considering its size deficit, i.e., by how much its font size
f̂i is smaller than the viewer’s preferred font size fpi. If the
text size is larger than the preferred font size, then the size
deficit is 0. Our system can dynamically generate shortened-
version texts to fit the document better. In this case, we further
penalize text changes if the shortened version is used. We
use the summarization evaluation metric BERTScore [41] to
measure the similarity between the shortened version t̂i and
the original version torig to improve the overall readability. A
higher BERTScore indicates greater similarity. Thus, the text
loss in FLEXDOC is defined as

2

Ltext =
1

Ntext

Ntext∑
i=1

max(fpi−f̂i, 0)−
1

Ntext

Ntext∑
i=1

BERTScore(t̂i, torig),

(6)
where Ntext is the number of text items.
3) Alignment Loss: Previous work explored how to mea-

sure the overall aesthetics of a layout based on established
visual principles [42]. This overall aesthetics loss term could
be easily extended to consider different aesthetic principles.
FLEXDOC currently uses alignment loss. For example, we
penalize when the images ei and ej in the same row are not
aligned along the horizontal midline:

Lalign(i,j) = |(ŷi +
1

2
ĥi)− (ŷj +

1

2
ĥj)|2 (7)

C. Discrete Loss Term

The discrete loss term Ldisc involves the selection of tem-
plates and individual content alternatives. For each element
ei, if the viewer has no specific preference, the discrete loss
for this element is determined by the author preference loss,
Lauthor,i. When the viewer indicates their preferences without
interacting directly, the discrete loss shifts to the viewer
preference loss, Lviewer,i. However, if the viewer actively
interacts with the content, the discrete loss is governed by
the viewer interaction loss, Lint,i, ensuring that the content
dynamically adjusts to their direct input.

Ldisc(ê1, ê2, ..., êN ;Wdisc)

=
∑
i

wauthor,iLauthor,i +wviewer,iLviewer,i +wint,iLint,i,

(8)

where one of {wauthor,i, wviewer,i, wint,i} is 1 and the
other two are 0, depending on whether the viewer sets their
preferences or interacts with the content.

1) Author Preference Loss: Document authors have the
flexibility to define alternatives for both layout templates and
content, each associated with preference ranks. Larger loss
values are assigned to lower-ranked templates. In practical
terms, the m-th ranked template is assigned a loss value of
−1000 · (M + 1−m), prioritizing more preferred templates,
where M is the number of template alternatives. This approach
creates a gradient of loss values between ranks, allowing for
optimization within a template before transitioning to another.
Similarly, for the i-th content, the k-th ranked template is
assigned a loss value of −50 · (Ki + 1 − ki) to prioritize
more preferred alternatives, where K is the number of alter-
natives for that specific content. The final loss for the author’s
preference is then calculated as follows:

Lauthor = −1000 · (M +1−m)−
N∑
i=1

50 · (Ki +1− ki). (9)

Fig. 1: Examples of image seam carving and content summa-
rization.

2) Viewer Preferences: Viewer preferences have higher
priorities than those specified by authors, as the end goal of
our approach is to enhance the viewing experience. As shown
in Figure 2, viewers can adjust their preferences with the
sliders. For example, if the viewer increases their preference
for “images” using the corresponding slider, the loss value of
all image alternatives will be decreased so that images are
more likely to be chosen. The range of sliders is within [0, 1],
where 0.5 indicates no change in preferences. We denote the
slider value to be sk. Other loss values remain the same as
defined by author preferences if not set by the viewer. Thus,
the viewer preference loss is defined as

Lviewer =

N∑
i=1

(0.5− sk) · 50 · (Ki + 1− ki)). (10)

3) Viewer Interactions: FLEXDOC can dynamically change
the screen’s content in response to viewer interactions. Viewer
interactions are given the highest priority since they represent
direct requests from the user. Thus, if the viewer chooses a
specific template or content alternative through an interaction,
that alternative must be selected unless no solution exists.
Other contents are then optimized accordingly.

III. DYNAMIC CONTENT GENERATION

Given a screen/window size, we optimize the positions and
sizes of elements and the selection of alternatives through
the optimization process. However, fitting all content into
a layout is often challenging, especially for smaller screen
sizes. One solution is to scale images and text. However, this
would reduce content readability if images or fonts become too
small. Alternatively, we could maximize readability by cutting
content, but then we would lose (too) much information.

To accommodate the vast diversity of screen sizes and
document author and viewer preferences, FLEXDOC selects
or dynamically generates alternative content. It applies image
processing techniques such as seam carving to adapt images
and BERT-based text summarization to generate alternative
texts in variable sizes. It then optimizes across all the potential
alternatives that conform to the given screen size and viewer
preferences. For example, FLEXDOC will generate a smaller
version of an image or a summarized version of a paragraph
when the document is read on a small-screen device like a
mobile phone. FLEXDOC also supports “content replacement

3

plugins”, meaning that the two implemented methods can
be easily replaced with different image resizing and text
summarization algorithms.

A. Image Seam Carving

Free-form scaling is the most common way to generate
alternative images that fit a different screen size. However,
standard image scaling often leads to a change in aspect ratio
and thus distorts images [43]. An effective way to resize
images based on geometric constraints considers the image
content. Seam carving is a content-aware image resizing ap-
proach that supports both image reduction and expansion [44],
which can re-target an image to fit the expected size and
aspect ratio while maintaining important content in the image
and reducing unexpected distortions (Figure 1 a). FLEXDOC
uses this seam carving method to generate image alternatives
automatically.

B. Content Summarization

Due to the diversity in screen sizes, a layout may not be
able to include the complete text, even if vertical scrolling is
enabled. Previous work [45] directly scaled fonts, which can
significantly affect readability. Instead, it is often preferable
to shorten the content so that the overall result maintains
readability without losing important information. Additionally,
different viewers likely have different background knowl-
edge/interests in the same content. Some people might need
more detailed information, while too detailed information
might be redundant for others who are only interested in
the gist of the text. It is thus helpful to have access to text
alternatives with different lengths to meet these varying needs.
To generate reasonable shortened versions of a piece of text,
we utilize the BERT model [46] to automatically generate
summarized versions [47] (Figure 1 b). Alternatively, we
could use large language models (LLMs) to generate various
versions of the text, but LLMs may result in higher latency.

C. Alternative Modalities

Depending on screen sizes, author and viewer preferences,
and requirements such as accessibility, the same information
may have to be presented through alternate modalities. For
example, an image may require alternative text. We cur-
rently expect document authors to provide the content for
different alternative modalities. However, FLEXDOC’s content
replacement plugin architecture makes it easy to automate the
generation of alternative modalities if suitable algorithms are
available, e.g., alternative text or audio generated by machine
learning models, like in Figure 2a. FLEXDOC then optimizes
the selection of alternative content modalities. For example, to
support people who prefer more visual information, FLEXDOC
can use images to replace text to meet their needs.

IV. DOCUMENT AUTHORING AND VIEWING

FLEXDOC optimizes the document based on the screen
properties, author preferences, and viewer preferences. Au-
thors can define their content preferences using FLEXDOCED-
ITOR, a graphical document template editor (Figure 4). This

editor allows authors to guide the optimization process by
providing different layout templates, content alternatives, and
preference rankings. Subsequently, the document can then be
optimized based on the screen size and author preferences. On
the other hand, viewers can also adapt a document by selecting
different layout templates or adjusting their preferences via
simple operations. Once the screen size changes and/or the
viewer indicates their preferences, the document can adapt
accordingly. These changes are saved and applied to other
documents, reducing the need for repeated adjustments and
ensuring a consistent viewing experience.

A. Layout Templates

FLEXDOC uses tabstop-based layout templates to create
adaptive documents due to their flexibility [33]. A tabstop is
a symbolic object that represents the alignments of widgets
in a layout [37], [40], [48]–[50]. A tabstop is essentially
a variable, with an x-tabstop defining a vertical grid line
through a position on the x-axis and a y-tabstop defining a
corresponding horizontal grid line on the y-axis.

A template is defined as a set of tabstops used to align the
elements that make up a document’s content. Each document
element is assigned to an area defined by two horizontal tab-
stops and two vertical tabstops. If multiple items are assigned
to the same area, they flow in that area one after the other
in a specified direction, similar to text. A document element
may have different alternatives, with preferred alternatives
having higher priorities during optimization. Templates can
be predefined, reused, and shared, which reduces the burden
of document authoring.

B. Authoring Documents (Author Interface)

1) Template Creation: Authors can also use the FLEX-
DOCEDITOR to create templates. Authors can edit tabstops,
element areas defined by tabstops, and preference ranks for
alternative content, as illustrated in Figure 4. Tabstops are
defined by clicking on the editing canvas to set relative
positions. Left clicks create horizontal tabstops (green lines),
and right clicks create vertical tabstops (blue lines). Authors
can then place document elements by selecting two horizontal
and two vertical tabstops or layout boundaries; the selected
tabstops and respective areas are highlighted in yellow.

2) Content Alternatives: Authors can define alternatives for
each document element. FLEXDOCEDITOR supports alter-
natives with mixed modalities for the same element, e.g., a
document element can have both image and text alternatives.
The preference ranks of alternatives can be modified via
a list widget. Preferred alternatives rank higher in the list
and thus get higher priority during optimization (Figure 4
b). The resulting tabstops and element alternatives with their
preference ranks are then exported as a JSON file, directly
used in the optimization process when viewing a document.
FLEXDOC can also use multiple templates to optimize a sin-
gle document, allowing authors to rank the templates available
for a document by preference. Authors can use FLEXDOCED-
ITOR to visually create templates for web documents without

4

Fig. 2: a) FLEXDOC adapts a news page on a mobile phone to provide a compact overview with quick access to audio content
for each article, based on (previously expressed) viewer preference (sliders below images), which prioritizes audio content over
images and text here. b) The same news page adapted for a tablet device with a user preference for image content. c) As the
viewer ‘pins’ the COVID article and ‘zooms in’ on the Mars article, FLEXDOC rearranges the layout accordingly, keeping the
pinned article in place. d) As the viewer ‘zooms in’ on the blue text paragraph in the previous image with a preference for
avoiding scrolling, FLEXDOC extends the paragraph to provide more details and crops the top image, avoiding the need for
scrolling. Image credits: Production Perig/stock.adobe.com and NASA/JPL-Caltech.

manually defining properties in HTML files, easing the burden
of adaptive website creation.

C. Viewing Documents (Viewer Interface)

FLEXDOC provides simple operations that allow viewers
to express other preferences and interactively adapt documents
while reading:

a) Sliders: FLEXDOC allows viewers to adjust their
high-level preferences using sliders (Figure 2 ab). Viewers
can use these sliders to express preferences or dislikes for
specific content modalities (e.g., images). FLEXDOC then
automatically generates the corresponding objective terms,
optimizing the document to align as closely as possible with
the viewer’s preferences. These preferences can be applied
across documents to ensure a consistent reading experience.

b) Zoom In: Viewers can indicate their interest in spe-
cific content by clicking on or touching it (Figure 2 bcd).
FLEXDOC then increases the detail of the content where
viewers have shown interest. In the backend, FLEXDOC re-
ranks alternatives for the indicated content, prioritizing those
with more detail (larger images, longer text).

c) Zoom Out: This operation is the inverse of ‘Zoom In’,
causing FLEXDOC to re-rank alternatives for the content so
that those with less detail are prioritized.

d) Pin: Viewers can pin content to its current location
by double-clicking on the content element (Figure 2 bcd).
FLEXDOC fixes this content while optimizing other content.

e) Switch Template: If authors have provided multiple
alternative layout templates for a document, viewers can
express a preference for a specific template by selecting it from
a list (Figure 3 b). If a valid solution exists, FLEXDOC will
optimize the document using the selected layout template.

f) Switch Element: Viewers can switch to an alternative
representation of a document element (e.g., text vs. image,
longer vs. shorter text) by right-clicking on the element and
selecting a preferred alternative from the available options

(Figure 6 b). Then, FLEXDOC optimizes the document based
on the selected option, provided a valid solution exists.

V. APPLICATIONS

We demonstrate FLEXDOC in multiple real-world applica-
tion scenarios. In addition to the new website shown in the
main paper, we show three additional examples.

A. Scientific Paper

Reading scientific papers on devices with small screens,
especially when they contain wide figures, can be challenging.
Additionally, when reading papers, people often have to scan
the entire document to find relevant sections they want to
read first. Some individuals prefer to start by reading the
abstract and the body text, while others might prefer to begin
by scanning the figures and their captions to get a general
idea of the paper. Furthermore, the ability to automatically
convert a paper into different formats can significantly save
time for scientific authors and help viewers better understand
the content.

FLEXDOC addresses these use cases by adapting a paper
according to device properties and viewer preferences (see
Figure 5). For instance, if the viewer prefers to see only
sections to gain an overview, FLEXDOC can generate a version
with section titles only (Figure 5a). If the viewer prefers a
figure-only two-column format of the paper that fits the screen
to gain a visual overview, FLEXDOC can generate a version
with figures only (Figure 5b). On a desktop screen, a wide
figure can be displayed. The same figure is shown on a small
screen with automatic reflowing, allowing for scrolling down.

B. Academic Website

FLEXDOC can generate adaptive websites with lists of
publications for different devices by selecting the most suitable
content alternatives based on device properties and viewer
preferences. Corresponding alternative content is used in the

5

Fig. 3: Document optimization results: a) The author defines three templates. FLEXDOC optimizes tabstop positions based on
the objective function. b) Document results when the viewer prefers the first or second template, respectively. c) Document
results on different devices. The results balance both layout structure and the amount of content.

different layouts, highlighted in blue boxes. For example,
the conference logo is displayed on desktops, the full name
of the conference is shown on tablets, and the conference
abbreviation is presented on mobile devices (see Figure 6a).
If the viewer prefers to see the full names of authors and
conferences, FLEXDOC can generate a personalized mobile
version of the website by allowing the viewer to switch
elements. This can be done by right-clicking on the element

and selecting a preferred alternative from the available options.

C. News Website with Advertisements
We present an additional news website example containing a

“VL/HCC2024” advertisement to demonstrate how FLEXDOC
can adapt documents to different devices (Figure 7). On the
desktop, all the rows are aligned, while on a tablet, columns
are aligned. Different alternatives to the “VL/HCC2024” ad-
vertisement are selected based on the device properties and

6

Fig. 4: FLEXDOCEDITOR is used for authoring adaptive documents. It allows authors to create templates by specifying
tabstops and document elements: a) Horizontal (green) and vertical tabstops (blue) are created by clicking on the canvas. b)
Document elements are placed by selecting the surrounding tabstops or layout boundaries (yellow). Authors can then use the
+/- buttons to add/delete alternatives for a document element and the up/down arrow buttons to specify their preference ranks.

c) d)a) b)

Fig. 5: An application of FLEXDOC for adapting the layout of scientific papers based on the screen size and author and viewer
preferences. The figure illustrates the results of applying FLEXDOC to our FLEXDOC paper in various scenarios: a) The viewer
prefers to see only sections, for instance, to gain an overview. b) The viewer prefers a figure-only two-column format of the
paper that fits the screen, for instance, to gain a visual overview. c) A wide figure is shown on a desktop screen, including
the option to scroll down, for instance, to inspect it in detail. d) The same figure is shown on a small screen with automatic
reflowing, including the option to scroll down.

the layout structure to avoid the advertisement occupying too
much space while still drawing attention.

VI. COMPARISON

We illustrate the comparison between our algorithm and
other existing tools in adapting a desktop document to a

smaller screen in Table I. Our FLEXDOC algorithm is ca-
pable of generating adaptive content, enabling image flow,
and producing adaptive documents with multiple columns,
all without the need for breakpoints (screen sizes at which
the document layout changes) or coding. In contrast, Adobe

7

Fig. 6: a) FLEXDOC can generate adaptive websites with lists of publications for different devices. Corresponding alternative
content is used in the different layouts (in blue boxes). For example, the conference logo (on the desktop), the full name of
the conference (on a tablet), and the conference abbreviation (on a mobile) are alternatives. b) Personalized mobile version of
the website if the viewer prefers to see the full names of authors and conferences.

Acrobat Liquid Mode is restricted to a single-column format
for mobile document viewing, lacks automatic adaptation to
a multi-column format, and does not support image flows.
Responsive Web Design (RWD) utilizes HTML and CSS to
automatically resize, hide, shrink, or enlarge a website to fit
different devices. However, it requires coding and places the
onus on authors to manually code and set breakpoints for
different layout sizes. While Webflow eliminates the need for
coding, it still requires authors to establish breakpoints for
varying screen sizes and does not support image flows without
designing different layouts for different devices. Furthermore,
all these approaches, except our FLEXDOC, fail to generate
adaptive content. This means that once the design is finalized,
the content becomes fixed, thereby limiting viewers from mod-
ifying the content according to their preferences. FLEXDOC,
on the other hand, can adapt to different viewer preferences,
a feature currently unavailable in other tools.

In addition, we compare FLEXDOC to previous adaptive
document layout methods. In contrast to Zooming User In-
terfaces (ZUIs), e.g., [51], which make some components
invisible while zooming, FLEXDOC enables adaptive content
generation and optimizes layouts to emphasize the object of
interest while also keeping other components visible/readable
and the layout reasonably close to the original one. Compared
to content management systems (CMSs), FLEXDOC provides
more expressiveness for authors and a more personalized
experience for viewers. FLEXDOC could be integrated into
a CMS to address the limitations of such systems. Responsive
web design (RWD) uses HTML and CSS to automatically
resize, hide, shrink, or enlarge a website to fit different devices.
Compared to RWD, FLEXDOC can adapt to different viewer
preferences, which is not currently possible for RWD.

VII. USE CASES

FLEXDOC’s ability to adapt to different devices and content
enables adaptive documents in various use cases:

1) Adaption to Different Devices: Most current documents
are static. Once a document has been created, viewers have
very limited options to change how they view the document.
For example, many documents cannot be easily shown on
small screens such as mobile phones. Generating and adapting
documents to different devices with various sizes, aspect
ratios, and orientations is a challenging problem. In contrast,
documents made with FLEXDOC can adapt more easily to
different devices.

2) Accessibility: FLEXDOC benefits people with different
document viewing requirements. It generates documents with
more images when the user prefers visual content over text.
FLEXDOC can also generate documents with different font
sizes or even audio options if the user has vision impairments.
Furthermore, alternative versions of a text with different lan-
guages can be used to support internationalization.

3) Task-Specific Customization: FLEXDOC enables task-
specific customization depending on viewers’ needs. For ex-
ample, viewers often prefer first an overview of the latest news
and then consume some of the news items in more detail.
FLEXDOC supports the display of content at different levels
of detail, showing more detailed versions whenever the viewer
indicates their interests via clicking or touching the screen.

VIII. LIMITATION AND FUTURE WORK

FLEXDOC employs automated content generation methods
to produce suitable images and texts to fit the document
better. However, these methods need to be evaluated for quality
and efficiency. Sometimes, a text summarization model may
generate low-quality text [52], or an intelligent seam carving

8

ADVERTISEMENT

VL/HCC 2024: IEEE Symposium on Visual
Languages and Human-Centric Computing

ADVERTISEMENT

Fig. 7: A news website example on different devices with a “VL/HCC2024” advertisement, including the option to scroll down.
On the desktop, all the rows are aligned while on a tablet, columns are aligned. Different alternatives to the “VL/HCC2024”
advertisement are selected based on the device properties and the layout structure to avoid the advertisement occupying too
much space while still drawing attention.

approach may distort images or create visual artifacts. Nev-
ertheless, any content generation method can be used within
FLEXDOC. We provide an approach for “content replacement
plugins” within FLEXDOC, and the two methods implemented
in our prototype can be easily replaced with any desired image
resizing and text summarization algorithms. Poor content gen-
eration can be identified by the author and manually addressed

by replacing content accordingly. Alternatively, automated
feedback, such as an ML critic model, could be used to
evaluate the quality of content alternatives.

While FLEXDOC reduces the authoring effort for templates,
we are currently limited to ones that can be defined via tab-
stops. Future work could enable the adaptation to infographics
or images with irregular boundaries to different screens and

9

Input Document Adobe Liquid Mode Webflow Ours

TABLE I: Comparison between our algorithm and other existing tools, in a scenario where when we adapt a document on the
desktop to a smaller screen.

user preferences. Also, our current work does not consider
semantic categories or the hierarchical structure of documents.
Future work could explore more extensive optimization based
on the semantics of document elements and the relationships
among those elements, particularly hierarchical structures.

IX. CONCLUSION

We introduced FLEXDOC, an innovative adaptive document
approach that facilitates dynamic optimization of both content
and layout structure. This optimization is not solely dependent
on screen or window sizes, but also takes the preferences of
both authors and viewers into account. FLEXDOC optimizes
the layout structure using an objective function, condenses
content to accommodate the layout, and further allows the
outcome to adapt based on user interactions. We anticipate
that our method could have broad applications across diverse
screen sizes and document types. The versatility of FLEXDOC
paves the way for potential future document-centric applica-
tions. Additionally, future work can move beyond the current
model where authors predefine extended content or extract
background information from previous articles. Instead, we
could develop more sophisticated approaches to dynamically
extend documents, and generate more relevant, high-quality

details. For example, in future work content generation ap-
proaches such as Large Language Models (LLMs) could be
used as part of the creation of intelligent, flexible documents
to provide suitable content for layouts that are in real time
optimized to fit the available space and context.

REFERENCES

[1] D. S. Weld, C. Anderson, P. Domingos, O. Etzioni, K. Gajos, T. Lau, and
S. Wolfman, “Automatically personalizing user interfaces,” in Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence,
IJCAI’03, pp. 1613–1619, Morgan Kaufmann Publishers Inc., 2003.

[2] J. Fogarty and S. E. Hudson, “Gadget: A toolkit for optimization-based
approaches to interface and display generation,” ACM Trans. Graph.,
vol. 23, p. 730, aug 2004.

[3] Y. Jiang, Y. Lu, J. Nichols, W. Stuerzlinger, C. Yu, C. Lutteroth, Y. Li,
R. Kumar, and T. J.-J. Li, “Computational approaches for understanding,
generating, and adapting user interfaces,” in Extended Abstracts of the
2022 CHI Conference on Human Factors in Computing Systems, CHI
EA ’22, (New York, NY, USA), Association for Computing Machinery,
2022.

[4] Y. Jiang, Y. Lu, C. Lutteroth, T. J.-J. Li, J. Nichols, and W. Stuerzlinger,
“The future of computational approaches for understanding and adapting
user interfaces,” in Extended Abstracts of the 2023 CHI Conference on
Human Factors in Computing Systems, CHI EA ’23, (New York, NY,
USA), Association for Computing Machinery, 2023.

[5] Y. Jiang, Y. Lu, C. Kliman-Silver, C. Lutteroth, T. J.-J. Li, J. Nichols,
and W. Stuerzlinger, “Computational methodologies for understanding,
automating, and evaluating user interfaces,” in Extended Abstracts of the

10

2024 CHI Conference on Human Factors in Computing Systems, CHI
EA ’24, 2024.

[6] Y. Jiang, “Computational representations for graphical user interfaces,”
in Extended Abstracts of the 2024 CHI Conference on Human Factors
in Computing Systems, CHI EA ’24, 2024.

[7] Y. Jiang, C. Zhou, V. Garg, and A. Oulasvirta, “Graph4gui: Graph neural
networks for representing graphical user interfaces,” in Proceedings of
the CHI Conference on Human Factors in Computing Systems, pp. 1–18,
2024.

[8] L. Hegemann, Y. Jiang, J. G. Shin, Y.-C. Liao, M. Laine, and
A. Oulasvirta, “Computational assistance for user interface design:
Smarter generation and evaluation of design ideas,” in Extended Ab-
stracts of the 2023 CHI Conference on Human Factors in Computing
Systems, pp. 1–5, 2023.

[9] K. Z. Gajos, D. S. Weld, and J. O. Wobbrock, “Decision-theoretic user
interface generation,” in AAAI’08, pp. 1532–1536, AAAI Press, 2008.

[10] K. Z. Gajos, D. S. Weld, and J. O. Wobbrock, “Automatically Generating
Personalized User Interfaces With Supple,” Artif. Intell, vol. 174, no. 12-
13, pp. 910–950, 2010.

[11] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld, “Improving the Perfor-
mance of Motor-Impaired Users With Automatically-Generated, Ability-
Based Interfaces,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’08, pp. 1257–1266, ACM, 2008.

[12] K. Gajos, R. Hoffmann, and D. Weld, “Improving user interface per-
sonalization,” in Supplementary Proceedings of UIST’04, ACM, 2004.

[13] K. Gajos, A. Wu, and D. S. Weld, “Cross-device consistency in automat-
ically generated user interfaces,” in Proceedings of the 2nd Workshop
on Multi-User and Ubiquitous User Interfaces, pp. 7–8, ACM, 2005.

[14] K. Gajos and D. Weld, “Preference elicitation for interface optimization,”
in UIST: Proceedings of the Annual ACM Symposium on User Interface
Softaware and Technology, pp. 173–182, ACM, 01 2005.

[15] A. Swearngin, C. Wang, A. Oleson, J. Fogarty, and A. J. Ko, Scout:
Rapid Exploration of Interface Layout Alternatives through High-Level
Design Constraints, p. 1–13. New York, NY, USA: Association for
Computing Machinery, 2020.

[16] P. Bielik, M. Fischer, and M. Vechev, “Robust relational layout synthesis
from examples for android,” Proc. ACM Program. Lang., vol. 2, Oct.
2018.

[17] A. J. H. Peels, N. J. M. Janssen, and W. Nawijn, “Document architecture
and text formatting,” ACM Trans. Inf. Syst., vol. 3, p. 347–369, Oct.
1985.

[18] D. E. Knuth and M. F. Plass, “Breaking paragraphs into lines,” Software:
Practice and Experience, vol. 11, no. 11, pp. 1119–1184, 1981.

[19] R. Furuta, J. Scofield, and A. Shaw, “Document formatting systems:
Survey, concepts, and issues,” ACM Comput. Surv., vol. 14, p. 417–472,
Sept. 1982.

[20] F. Mittelbach, “Formatting documents with floats a new algorithm for
latex 2ε,” in Volume 21, Number 3/September 2000 2000 Annual Meeting
Proceedings, p. 278, 2000.

[21] Y. Chen, X. Xie, W.-Y. Ma, and H.-J. Zhang, “Adapting web pages for
small-screen devices,” IEEE internet computing, vol. 9, no. 1, pp. 50–56,
2005.

[22] X. Xie, C. Wang, L.-Q. Chen, and W.-Y. Ma, “An adaptive web page
layout structure for small devices,” Multimedia Systems, vol. 11, no. 1,
pp. 34–44, 2005.

[23] J. Wu, K. Todi, J. Chan, B. A. Myers, and B. Lafreniere, “Framekit:
A tool for authoring adaptive uis using keyframes,” in Proceedings of
the 29th International Conference on Intelligent User Interfaces, IUI
’24, (New York, NY, USA), p. 660–674, Association for Computing
Machinery, 2024.

[24] C. Domshlak, R. I. Brafman, and S. E. Shimony, “Preference-based con-
figuration of web page content,” in Proceedings of the 17th International
Joint Conference on Artificial Intelligence - Volume 2, IJCAI’01, (San
Francisco, CA, USA), p. 1451–1456, Morgan Kaufmann Publishers Inc.,
2001.

[25] J. Li, J. Yang, A. Hertzmann, J. Zhang, and T. Xu, “Layoutgan: Gen-
erating graphic layouts with wireframe discriminators.” arXiv preprint
arXiv:1901.06767, 2019.

[26] K. Kikuchi, E. Simo-Serra, M. Otani, and K. Yamaguchi, “Constrained
graphic layout generation via latent optimization,” in Proceedings of the
29th ACM International Conference on Multimedia, pp. 88–96, ACM,
2021.

[27] X. Zheng, X. Qiao, Y. Cao, and R. W. H. Lau, “Content-aware generative
modeling of graphic design layouts,” ACM Trans. Graph., vol. 38, July
2019.

[28] H.-Y. Lee, L. Jiang, I. Essa, P. B. Le, H. Gong, M.-H. Yang, and
W. Yang, “Neural design network: Graphic layout generation with
constraints.” arXiv e-prints: 1912.09421, 2019.

[29] B. Myers, S. E. Hudson, and R. Pausch, “Past, present, and future of user
interface software tools,” ACM Trans. Comput.-Hum. Interact., vol. 7,
p. 3–28, Mar. 2000.

[30] B. A. Myers, “User interface software tools,” ACM Trans. Comput.-Hum.
Interact., vol. 2, p. 64–103, Mar. 1995.

[31] B. A. Myers, R. G. Mcdaniel, R. C. Miller, A. S. Ferrency, A. Faulring,
B. D. Kyle, I. C. Society, I. C. Society, A. Mickish, A. Klimovitski,
and P. Doane, “The amulet environment: New models for effective
user interface software development,” IEEE Transactions on Software
Engineering, vol. 23, pp. 347–365, 1997.

[32] C. Zeidler, G. Weber, A. Gavryushkin, and C. Lutteroth, “Tiling algebra
for constraint-based layout editing,” Journal of Logical and Algebraic
Methods in Programming, vol. 89, pp. 67–94, 2017.

[33] C. Lutteroth, R. Strandh, and G. Weber, “Domain specific high-level
constraints for user interface layout,” Constraints, vol. 13, no. 3,
pp. 307–342, 2008.

[34] S. Karsenty, J. A. Landay, and C. Weikart, “Inferring Graphical Con-
straints With Rockit,” in Proceedings of the Conference on People
and Computers VII, HCI’92, pp. 137–153, Cambridge University Press,
1993.

[35] A. Scoditti and W. Stuerzlinger, “A New Layout Method for Graphical
User Interfaces,” in Science and Technology for Humanity (TIC-STH),
2009 IEEE Toronto International Conference, pp. 642–647, IEEE, 2009.

[36] G. Weber, “A Reduction of Grid-Bag Layout to Auckland Layout,” in
Proceedings of the 2010 21st Australian Software Engineering Confer-
ence, ASWEC ’10, pp. 67–74, IEEE Computer Society, 2010.

[37] C. Zeidler, C. Lutteroth, G. Weber, and W. Stürzlinger, “The auck-
land layout editor: An improved gui layout specification process,” in
Proceedings of the 13th International Conference of the NZ Chapter
of the ACM’s Special Interest Group on Human-Computer Interaction,
CHINZ ’12, (New York, NY, USA), p. 103, Association for Computing
Machinery, 2012.

[38] Y. Jiang, R. Du, C. Lutteroth, and W. Stuerzlinger, “Orc layout:
Adaptive gui layout with or-constraints,” in Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, CHI ’19,
(New York, NY, USA), Association for Computing Machinery, 2019.

[39] Y. Jiang, W. Stuerzlinger, M. Zwicker, and C. Lutteroth, “Orcsolver:
An efficient solver for adaptive gui layout with or-constraints,” in Pro-
ceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, CHI ’20, (New York, NY, USA), p. 1–14, Association for
Computing Machinery, 2020.

[40] Y. Jiang, W. Stuerzlinger, and C. Lutteroth, “Reverseorc: Reverse
engineering of resizable user interface layouts with or-constraints,”
in Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, CHI ’21, (New York, NY, USA), Association for
Computing Machinery, 2021.

[41] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore:
Evaluating text generation with bert.” arXiv preprint arXiv:1904.09675,
2019.

[42] D. Schölgens, S. Müller, C. Bauer, R. Tilly, and D. Schoder, “Aesthetic
measures for document layouts: Operationalization and analysis in the
context of marketing brochures,” in Proceedings of the 2016 ACM
Symposium on Document Engineering, DocEng ’16, (New York, NY,
USA), p. 21–30, Association for Computing Machinery, 2016.

[43] M. Laine, Y. Zhang, S. Santala, J. P. P. Jokinen, and A. Oulasvirta,
“Responsive and personalized web layouts with integer programming,”
Proc. ACM Hum.-Comput. Interact., vol. 5, May 2021.

[44] S. Avidan and A. Shamir, “Seam carving for content-aware image
resizing,” in ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07, (New
York, NY, USA), p. 10–es, Association for Computing Machinery, 2007.

[45] A. Borning, R. K.-H. Lin, and K. Marriott, “Constraint-based document
layout for the web,” Multimedia systems, vol. 8, no. 3, pp. 177–189,
2000.

[46] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding.” arXiv
preprint arXiv:1810.04805, 2018.

[47] D. Miller, “Leveraging bert for extractive text summarization on lec-
tures.” arXiv preprint arXiv:1906.04165, 2019.

11

[48] O. Hashimoto and B. A. Myers, “Graphical styles for building interfaces
by demonstration,” in Proceedings of the 5th Annual ACM Symposium
on User Interface Software and Technology, UIST ’92, (New York, NY,
USA), p. 117–124, Association for Computing Machinery, 1992.

[49] S. E. Hudson and S. P. Mohamed, “Interactive specification of flexible
user interface displays,” ACM Trans. Inf. Syst., vol. 8, p. 269–288, July
1990.

[50] C. Lutteroth and G. Weber, “User interface layout with ordinal and
linear constraints,” in Proceedings of the 7th Australasian User Interface
Conference - Volume 50, AUIC ’06, (AUS), p. 53–60, Australian
Computer Society, Inc., 2006.

[51] B. B. Bederson, J. D. Hollan, K. Perlin, J. Meyer, D. Bacon, and
G. Furnas, “Pad++: A zoomable graphical sketchpad for exploring
alternate interface physics,” Journal of Visual Languages & Computing,
vol. 7, no. 1, pp. 3–32, 1996.

[52] W. Kryscinski, N. S. Keskar, B. McCann, C. Xiong, and R. Socher,
“Neural text summarization: A critical evaluation,” in Proceedings
of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), (Hong Kong, China), pp. 540–
551, Association for Computational Linguistics, Nov. 2019.

12

