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ABSTRACT
The document provides additional details on the implementa-
tion of the dataset, algorithm, and training process reported
upon in “EyeFormer: Predicting Personalized Scanpaths with
Transformer-Guided Reinforcement Learning.” In addition, it
presents a more comprehensive set of experimental results and
analysis of population-level and individual-level scanpath predic-
tions.

1 IMPLEMENTATION DETAILS

Figure 1: The distribution of scanpath lengths for the eye-
tracking-based dataset UEyes. With an average scanpath
length of 15.3 points, the visualization highlights that most
scanpaths are clustered around length 15.
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1.1 Dataset
GUIs and information graphics. Weutilized theUEyes dataset [7],

which comprises 1,980 images, from four common types of GUI
or informational graphics (namely, posters, desktop GUIs, mobile
GUIs, and webpages), with eye-tracking data collected from 62 par-
ticipants. This dataset was collected via a high-fidelity eye tracker
in a laboratory setting, to guarantee precise coordinates in the
X–Y plane, and the coordinate values were subjected to participant-
specific calibration accounting for factors such as eye–display dis-
tance. Throughout the data-collection process, the screen angle
for each participant was checked and adjusted, for emulation of
the individual-specific typical viewing scenario. Each participant,
seated roughly 50–65 centimeters from the screen, experienced
the same visual angle for all four types of interface. Uniformity of
visual angle was enforced for ease of comparison across interface
types: all data collection and subsequent analysis adhered to this
method consistently. By guaranteeing that the limits to the tracking
technology’s accuracy cannot unduly influence the assessment of
the mobile-device user interfaces, the uniform presentation strategy
maintains fairness in the evaluation process. Fixation duration was
ascertained directly from the timings recorded by the eye tracker.
A participant free-viewed each image for seven seconds.

We used the same training/test image split that Jiang et al. [7] did,
dividing the GUI image set such that 1,872 images were allocated to
the training set and 108 to the test set while making sure that the
four interface types were distributed evenly in each set. In addition,
to establish a training/test split for individual-level prediction, we
employed a further procedure: randomly assigning 53 users (85%
of the sample) to the training set and the remaining nine (15%) to
the test set. Our model was trained on the gaze data collected from
when the training users looked at the interfaces represented by
the set of training images. The viewers’ average scanpath length
was 15.3 points, with most scanpaths being clustered around length
15. Figure 1 presents the distribution of scanpath lengths from the
UEyes dataset.

1.2 Parametric Distributions
The method’s step 𝑖 employs a multi-layer Transformer decoder
to generate the distribution for the fixation point 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 ).
Meanwhile, fixation duration 𝑡𝑖 is modeled as a Gaussian distribu-
tion, with the mean 𝜇𝑡𝑖 and variance 𝜎𝑡𝑖 generated by the policy.
Similarly, a point’s coordinates 𝑥𝑖 and 𝑦𝑖 can be modeled as Gauss-
ian distributions, with means 𝜇𝑥𝑖 ,𝑦𝑖 and variances 𝜎𝑥𝑖 ,𝑦𝑖 dictated

https://doi.org/10.1145/3654777.3676436


UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Yue Jiang, Zixin Guo, Hamed R. Tavakoli, Luis A. Leiva, and Antti Oulasvirta

Algorithm 1 A comprehensive description of the RL approach proposed for scanpath prediction – an algorithm to optimize the scanpath-
prediction process iteratively, with feedback from salient-value and DTWD rewards employed to enhance performance
1: Initialize policy model 𝜋𝜃 parameterized by 𝜃
2: Initialize reward function 𝑅𝐷𝑇𝑊 , 𝑅𝑠𝑎𝑙
3: For each training step, do
4: Initialize empty list of sampled points 𝑝 , empty set of predicted points 𝑝𝑝𝑟𝑒𝑑 , and empty list of salient-value rewards 𝑟𝑠𝑎𝑙 , 𝑟

𝑝𝑟𝑒𝑑

𝑠𝑎𝑙
5: For each step 𝑖, do
6: Sample images I, ground truth 𝑝 , and saliency maps𝑀𝑠𝑎𝑙
7: If Gaussian distribution for coordinates, do
8: Generate the mean and variance of the points’ Gaussian distribution: 𝜇𝑥𝑖 ,𝑦𝑖 , 𝜎𝑥𝑖 ,𝑦𝑖 , 𝜇𝑡𝑖 , 𝜎𝑡𝑖 ← forward(I, 𝑝:𝑖−1, 𝜃 )
9: Sample predicted points from the Gaussian distribution: 𝑝𝑖 ← sample(𝜇𝑥𝑖 ,𝑦𝑖 , 𝜎𝑥𝑖 ,𝑦𝑖 , 𝜇𝑡𝑖 , 𝜎𝑡𝑖 )
10: If mixed Gaussian distribution for coordinates, do
11: Generate parameters of the points’ Gaussian distribution: 𝜆𝑖 , 𝜇𝑖 , 𝜎𝑖 , 𝜌𝑖 , 𝜇𝑡𝑖 , 𝜎𝑡𝑖 ← forward(I, 𝑝:𝑖−1, 𝜃 )
12: Sample predicted points from the Gaussian distribution: 𝑝𝑖 ← sample(𝜆𝑖 , 𝜇𝑖 , 𝜎𝑖 , 𝜌𝑖 , 𝜇𝑡𝑖 , 𝜎𝑡𝑖 )
13: Generate the mean of the Gaussian distribution for the points: 𝜇𝑝𝑟𝑒𝑑

𝑖
← StopGradient(forward(I, 𝑝𝑝𝑟𝑒𝑑:𝑖−1 , 𝜃 ))

14: Compute salient-value rewards for each sampled point: 𝑟𝑠𝑎𝑙,𝑖 ← 𝑅𝑠𝑎𝑙 (𝑝𝑖 , 𝑀𝑠𝑎𝑙 )
15: Compute salient-value rewards for each predicted point: 𝑟𝑝𝑟𝑒𝑑

𝑠𝑎𝑙,𝑖
← 𝑅𝑠𝑎𝑙 (𝑝

𝑝𝑟𝑒𝑑

𝑖
, 𝑀𝑠𝑎𝑙 )

16: Add 𝑝𝑖 to the set 𝑝; and add 𝑟𝑠𝑎𝑙,𝑖 to the set 𝑟𝑠𝑎𝑙
17: Add 𝜇𝑝𝑟𝑒𝑑

𝑖
to the set 𝑝𝑝𝑟𝑒𝑑 ; and add 𝑟𝑝𝑟𝑒𝑑

𝑠𝑎𝑙,𝑖
to the set 𝑟𝑝𝑟𝑒𝑑

𝑠𝑎𝑙

18: end for
19: Compute DTW rewards for all sampled and predicted coordinates: 𝑟𝐷𝑇𝑊 ← −𝑅𝐷𝑇𝑊 (𝑝, 𝑝); 𝑟

𝑝𝑟𝑒𝑑

𝐷𝑇𝑊
← −𝑅𝐷𝑇𝑊 (𝑝𝑝𝑟𝑒𝑑 , 𝑝)

20: Compute DTW rewards for all sampled and predicted durations: 𝑟𝐷𝑇𝑊 ,𝐷 ← −𝑅𝐷𝑇𝑊 ,𝐷 (𝑝, 𝑝); 𝑟
𝑝𝑟𝑒𝑑

𝐷𝑇𝑊 ,𝐷
← −𝑅𝐷𝑇𝑊 ,𝐷 (𝑝𝑝𝑟𝑒𝑑 , 𝑝)

21: Compute total rewards for sampled and predicted coordinates: 𝑟 ← 𝑟𝐷𝑇𝑊 + discount(𝑟𝑠𝑎𝑙 ); 𝑟𝑝𝑟𝑒𝑑 ← 𝑟
𝑝𝑟𝑒𝑑

𝐷𝑇𝑊
+ discount(𝑟𝑝𝑟𝑒𝑑

𝑠𝑎𝑙
)

22: Compute advantages for coordinates and durations: 𝐴𝑐𝑜𝑜𝑟𝑑 ← 𝑟 − 𝑟𝑝𝑟𝑒𝑑 ; 𝐴𝑑𝑢𝑟 ← 𝑟𝐷𝑇𝑊 ,𝐷 − 𝑟
𝑝𝑟𝑒𝑑

𝐷𝑇𝑊 ,𝐷

23: Compute the loss gradient with respect to the model’s parameters: ∇𝜃 ← compute_gradient(𝜋𝜃 (𝑝), 𝐴𝑐𝑜𝑜𝑟𝑑 , 𝐴𝑑𝑢𝑟 )
24: Update the parameters by using gradient ascent: 𝜃 ← 𝜃 + 𝛼∇𝜃
25: end for

by the policy:

𝑥𝑖 , 𝑦𝑖 ∼ N(𝜇𝑥𝑖 ,𝑦𝑖 , 𝜎𝑥𝑖 ,𝑦𝑖 )𝑡𝑖 ∼ N(𝜇𝑡𝑖 , 𝜎𝑡𝑖 ) . (1)

Furthermore, coordinates 𝑥𝑖 and𝑦𝑖 can be represented by amixed
Gaussian distributionwith𝐾 components, determined by the policy-
generated parameters: component weight 𝜆𝑖𝑘 , mean 𝜇𝑖𝑘 , variance
𝜎𝑖𝑘 , and correlation 𝜌𝑖𝑘 . This distribution is expressed as

𝑥𝑖 , 𝑦𝑖 ∼
𝐾∑︁
𝑘=1

𝜆𝑖𝑘N(𝜇𝑖𝑘 , Σ𝑖𝑘 ) . 𝑡𝑖 ∼ N(𝜇𝑡𝑖 , 𝜎𝑡𝑖 ), (2)

Here, the covariance matrix (Σ𝑖𝑘 ) is defined in terms of variance
𝜎𝑖𝑘 and correlation 𝜌𝑖𝑘 .

1.3 Algorithm
The pseudocode presented for Algorithm 1 thoroughly describes the
RL-based approach we propose for training the scanpath-prediction
model. The algorithm is designed to optimize the prediction process
iteratively by taking advantage of feedback from salient-value and
DTWD rewards to enhance performance. The algorithm progresses
through the following six stages:

(1) Generating the policy model’s output: In each iteration,
the algorithm generates the output from the model, compris-
ing the parameters of a Gaussian distribution. This distri-
bution informs the sampling of points, and its mean values
function as the predicted points.

(2) Computing the salient-value reward: The algorithm com-
putes a salience reward for each iteration’s sampled and
predicted points. This reward reflects the importance of the
points with reference to the overall saliency map.

(3) Constructing scanpaths: The sampled and predicted points
from each iteration get added to two empty sets, forming the
sampled and predicted scanpath as the algorithm continues
its work.

(4) Calculating the DTWD reward: The algorithm calculates
the DTWD reward for the sampled and predicted scanpath,
conducting comparison with the ground-truth scanpath. As
a metric for similarity between two sequences, DTW aids in
assessing how well the predicted and real-world scanpath
match.

(5) Computing the total reward: Total-reward values are
obtained from combining the salient-value rewards and
DTWD rewards. These rewards are usually discounted, to
give greater weight to recent predictions.

(6) Updating the policy: Finally, the algorithm updates the
policy derived via the reward. This step involves adjusting
the model’s parameters or the strategy behind sampling and
prediction of points. The goal is to optimize the algorithm’s
performance for accurate scanpath predictions.
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1.4 Training Process
Natural scenes. Following the approach of Chen et al. [2], we

employed ResNet-50 [5] as the vision encoder. With an input image
in 240 × 320 resolution, a 30 × 40 grid of features gets generated as
the encoder’s output. In our technique, a four-layer Transformer
with eight heads and a hidden layer size of 256 then operates as the
fixation decoder, generating a sequence of 𝑇 = 10 fixation points.
A mixed Gaussian distribution, utilizing 𝐾 = 10 components, is
employed to model fixation coordinates. At each step, the fixation
decoder generates the component weight, mean, variance, and
correlation, in the manner represented by Equation 2.

GUI images. Our decision to implement the vision encoder by
means of the ViT-Base [4] architecture, with the aforementioned 12-
layer version of the model, was driven by its demonstrated ability
to handle diverse visual patterns and its potential to outperform tra-
ditional convolutional neural networks in various task conditions.
By means of self-attention and Transformer-based mechanisms,
the ViT-Base model can learn intricate relationships among image
elements without requiring handcrafted architecture-level modifi-
cations for specific problem domains. Before feeding an image to
the vision encoder, we resized it to a square with dimensions of
𝑤inp = ℎinp = 256, divided that square into 256 patches each of size
16 × 16, and embedded these with a dimensionality of 𝑑I = 768.
For the fixation decoder, we employed a three-layer Transformer,
utilizing the first three BERT-Base [3] layers. The policy model is
optimized via policy gradients to generate a sequence of 𝑇 = 15
points as the final output. This setting for 𝑇 accounts for the fact
that many methods [1, 6–9] rely on a fixed number of generated
points, with metrics’ results depending considerably on the lengths.
A value of 15 is consistent with the concentration of scanpath
lengths around said value as captured in Figure 1. The Gaussian
distribution is employed to model the fixation coordinates. At each
step, the fixation decoder generates the mean and variance in line
with Equation 1.

Two-stage training. To mitigate the policy-gradient-associated
training variance, we took a two-part approach to the training.
The process initializes the decoder-generated parameters of Gauss-
ian distribution 𝜋𝜃 (𝑝𝑖) for fixation points with the negative log-
likelihood loss. This initialization process entails 30 training epochs
with a batch size of 64 and a learning rate of 0.0001. The second
step employs policy-gradient techniques to train the policy fur-
ther within an RL framework, utilizing DTWD and salient-value
rewards. This step applies 40 training epochs for natural scenes and
20 for GUIs, with a batch size of 64 and a learning rate of 0.00001.

2 EXPERIMENT RESULTS
Below, we present additional results and in-depth analysis of ’s
population-level and individual-level scanpath prediction.

2.1 Ablation Studies
For further assessment of the proposed RL framework’s effective-
ness and versatility, we carried out ablation studies with various
vision-encoder architectures and with alternative approaches to
Gaussian modeling utilized in the fixation decoder. The first abla-
tion study, of architectures for vision encoders that apply Gaussian

distributions for the UEyes data, demonstrated RL’s advantages
over non-RL approaches for the dataset. This is evidenced by its su-
perior performance across most evaluation metrics for both ResNet
and ViT techniques, as detailed in Table 1. The findings indicate
that utilizing RL leads to more accurate fixations relative to not
applying RL, irrespective of the architecture employed.

With another ablation study, exploiting a ResNet vision encoder,
we examined the RL framework with alternative approaches to
Gaussian modeling. This involved generating fixation positions
by means of both Gaussian distributions and mixed Gaussian dis-
tributions. The results illustrate that RL’s incorporation consis-
tently enhances model performance across most metrics, whichever
Gaussian-based approach is implemented.

2.2 Population-Level Scanpath Prediction
Next, we supplement the evaluation presented in the paper for
population-level scanpath prediction with more result sets and
deeper analysis.

2.2.1 Qualitative evaluation. Figure 4 and Figure 5 present perfor-
mance for population-level prediction with, respectively, natural
scenes and GUI images. The figures showcase the performance of
our model well. Comprehensive comparison of our model with prior
models for both of these stimulus classes is provided by Figure 6
and Figure 3.

2.2.2 Scanpath properties. Analyzing scanpath properties facili-
tates comparing scanpath-prediction models at another level. Ac-
cordingly, we address two key facets of scanpaths below: 1) sac-
cades’ angle and amplitude distribution and 2) visited- and re-
visited-element ratios. All results shown here were evaluated by
means of the test data. These results were computed from the scan-
path predictions made with the GUI data.

Saccade angle and amplitude distributions. Figure 8 char-
acterizes the saccade-angle and amplitude-distribution aspect of
our comparison. Visualizations of saccade bias assist in examining
the direction and distance traveled between successive fixation
points. Researchers have observed that the ground-truth gaze direc-
tions predominantly lie toward the right and the bottom portion(s)
of GUIs, with the distances being greater toward the right-hand
side. This is evidence that users tend to move their gaze left–right
(rather than the opposite) across large distances and from top to
bottom. Our model excels at capturing and replicating said char-
acteristic, and it outperforms preexisting models in this regard.
The pre-trained PathGAN model and DeepGaze III’s distributions
manifest clustering, caused primarily by the presence of point clus-
ters in the predicted scanpaths. Both PathGAN models trained on
UEyes and PathGAN++ suffer from erroneous center bias in their
distributions. This limitation is evident also with the ScanGAN and
ScanDMM models, as their distributions’ middle-centricity attest.
Furthermore, the Chen et al. model exhibits a tendency to place
consecutive fixations in close mutual proximity. The Itti–Koch-
based one and DeepGaze++, by incorporating IOR, prevent short
distances between successive fixation points. Consequently, both
output saccade amplitudes larger than those visible in the ground-
truth data, thereby manifesting a weakness in their approach to
capturing natural gaze behavior. SaltiNet and UMSS are similar in
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Model DTW ↓ TDE ↓ Eyenalysis ↓ DTWD ↓ MultiMatch ↑
Shape Direction Length Position Duration Mean

Different Vision Encoders on UEyes with Gaussian
ViT w/o RLs 4.304 ± 1.309 0.143 ± 0.041 0.049 ± 0.024 5.299 ± 1.235 0.946 0.709 0.925 0.820 0.736 0.827
ViT 4.069 ± 1.089 0.122 ± 0.029 0.036 ± 0.018 5.043 ± 1.052 0.942 0.748 0.940 0.825 0.750 0.841
ResNet w/o RLs 4.146 ± 1.344 0.136 ± 0.037 0.045 ± 0.025 5.176 ± 1.282 0.945 0.702 0.923 0.825 0.723 0.824
ResNet 3.843 ± 1.103 0.116 ± 0.030 0.035 ± 0.017 4.864 ± 1.084 0.944 0.749 0.937 0.837 0.747 0.843

Different Gaussian Modelling on UEyes with ResNet
Gaussian w/o RLs 4.146 ± 1.344 0.136 ± 0.037 0.045 ± 0.025 5.176 ± 1.282 0.945 0.702 0.923 0.825 0.723 0.824
Gaussian 3.843 ± 1.103 0.116 ± 0.030 0.035 ± 0.017 4.864 ± 1.084 0.944 0.749 0.937 0.837 0.747 0.843
Mixed Gaussian w/o RLs 4.721 ± 1.543 0.127 ± 0.040 0.042 ± 0.028 5.887 ± 1.441 0.940 0.748 0.935 0.801 0.723 0.830
Mixed Gaussian 3.938 ± 1.139 0.115 ± 0.031 0.035 ± 0.019 4.936 ± 1.087 0.940 0.758 0.937 0.836 0.753 0.845

Different Gaussian Modelling on OSIE with ResNet
Gaussian w/o RLs 2.555 ± 0.840 0.123 ± 0.036 0.047 ± 0.024 2.898 ± 0.794 0.932 0.687 0.918 0.818 0.696 0.810
Gaussian 2.169 ± 0.759 0.114 ± 0.036 0.046 ± 0.026 2.525 ± 0.698 0.944 0.694 0.930 0.846 0.707 0.824
Mixed Gaussian w/o RLs 2.492 ± 0.886 0.120 ± 0.042 0.045 ± 0.027 2.863 ± 0.825 0.935 0.675 0.922 0.833 0.700 0.813
Mixed Gaussian 2.193 ± 0.831 0.115 ± 0.042 0.044 ± 0.026 2.562 ± 0.756 0.944 0.679 0.932 0.850 0.706 0.822

Table 1: Results from an ablation study examining the performance of various vision encoders and forms of Gaussian modeling
in population-level scanpath prediction with the UEyes and OSIE datasets.

this respect, with the shortcoming being evident from the extent
of the movement distance. Though employing inhibition of return,
our model still generates some short vertical-movement distances.

Ratios for the elements visited and returned to. To enable
comparing the visited- and re-visited-element ratios from the vari-
ous models’ scanpaths for people looking at GUIs, we performed
segmentation and classified the interface elements into three dis-
tinct categories: images, text, and faces. Then, we calculated the
number of elements in each category that were visited (fixated on)
and re-visited (fixated upon at least once more), where an element
already visited is considered re-visited if encompassing at least
three fixation points after a fixation on a different element. Figure 9
presents the results of our comparison.

Of the models evaluated, ours produces the estimation nearest
the ground truth for both sets of ratios. The other models’ per-
formance varies greatly, with some scanpaths representing under-
estimation of these ratios and others leading to overestimation.
For instance, both the visit and the return-visit ratios from the
pre-trained PathGAN and DeepGaze III models’ output are unreal-
istically low. While SaltiNet and UMSS perform well at producing
accurate element-visit and re-visit ratios for images, the ratios are
still too low for text and faces. The Itti–Koch-based model captures
both ratios well for text in addition to images, but its performance
is worse for faces, with excessively low re-visit ratios. Conversely,
DeepGaze++’s predictions match the ground-truth visit ratios ex-
cellently while the re-visit ratios are too high. Both ScanGAN and
ScanDMM yield overly high return-visit ratios for textual elements,
with ScanDMM’s predictions simultaneously generating underes-
timates for return visits to faces (these results are consistent with
our observation in the qualitative comparison that ScanDMM is
more text-focused). Finally, the model by Chen et al. generates
predictions that can be characterized as underestimating the re-
visited-element ratio for both text and faces while overestimating
the visited-element ratio for face elements.

2.3 Individual-Level Scanpath Prediction
We verified our model’s ability to generate personalized scanpaths
by proceeding from a few scanpath samples from the individual,

thus confirming that the model can effectively capture each user’s
viewing preferences/behaviors and reflect them in its output. Fig-
ure 10 presents a few sample individual-level scanpath predictions
in qualitative terms. These and the additional example scanpath
predictions that Figure 11 offers, for several distinct viewers, demon-
strate that the personalized scanpaths generated for each training
user lie reasonably close to the ground truth. On the quantitative
side, Figure 2 depicts the relationship between sample quantity and
the numerically judged performance of individual-level scanpath
prediction. We set 𝑛𝑝𝑎𝑡ℎ to 50, to strike a balance between accuracy
and data volume. The choice to use 50 samples is supported by the
performance enhancement evident upon increasing the quantity
from 30 to 50 samples, coupled with the consistent performance
plateau evident at 50–70 samples.

3 APPLICATION FOR PERSONALIZED VISUAL
FLOWS

Figure 3 shows the results from the implementation for person-
alized visual flows, which is outlined in the paper. The designer
supplies a GUI layout and the visit order desired for the most impor-
tant elements: the three or more to be fixated upon first. From this
input, outputs both population-optimized and individual-optimized
layouts. The model optimizes the individual-specific ones on the
basis of the personalized scanpath-prediction results. Specifically,
given a viewer with 𝑛path scanpath samples (in our experiments,
𝑛path = 50), it generates a corresponding personalized layout opti-
mized from the predicted scanpaths at the individual level for this
specific viewer.

Tests of three source designs for 62 viewers produced the follow-
ing results:

(1) With “Design 1,” 56 viewers would follow the desired view-
ing order for the designer-specified elements with the
population-optimized layout, and the associated average
total fixation duration is 1.29 seconds. All 62 would adhere
to the desired order when shown the corresponding person-
alized layout. The average duration sum, 1.86 seconds, is
44.19% greater than the figure for the population-optimized
layout.
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Figure 2: Performance for individual-level scanpath prediction plotted against sample quantity. As the sample count rises, the
quantitative outcome (as measured by DTW, TDE, and Eyenalysis) improves. A noteworthy pattern is detectable for the span
between as few as 10 samples and about 50, with all three panes likewise showing a clear deceleration in advancement as the
sample count climbs to 70 or more (this is particularly evident with the DTW and TDE metrics).

Input Design Population-Optimized Layout Personalized Layout (Viewer 1) Personalized Layout (Viewer 2)

D
es
ig
n
1

Average Duration: 1.29 Seconds Duration: 2.68 Seconds Duration: 1.47 Seconds

D
es
ig
n
2

Average Duration: 2.75 Seconds Duration: 4.06 Seconds Duration: 2.91 Seconds

D
es
ig
n
3

Average Duration: 4.42 Seconds Duration: 4.66 Seconds Duration: 3.68 Seconds

Figure 3: When given a starting GUI design accompanied by the order for the three elements deemed most important by the
designer, the system generates both the population-optimized layout and a layout personalized for each individual viewer. The
figure shows the average total fixation time for the specified elements across the tested viewers with the population-optimized
layout and the total duration of fixations on these elements for each personalized layout shown, within the 7 s viewing window.
The data show that the personalized layouts can attract more of the respective viewer’s attention to the target elements than
the population-optimized layout does.

(2) In the conditions of “Design 2,” 46 viewers would follow
the desired viewing order for the chosen elements when
presented with the population-optimized layout, and the
average duration is 2.75 seconds. All viewers but one would

attend to the elements in the desired order with the corre-
sponding personalized layout, and the average duration, at
3.19 seconds, is 16.00% higher than the equivalent sum for
the population-optimized layout.
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(3) Finally, with “Design 3,” 31 viewers would follow the desired
order for viewing the elements in the population-optimized
setting. The average duration here is 3.78 seconds. Shown
the individual-specific layout, 58 viewers would follow the
specified order, with an average duration sum of 4.45 sec-
onds. This is a visit time 17.72% longer than that with the
population-optimized layout.

These results show that personalized layouts can steer users toward
the desired viewing order and that, thereby, the specified elements
can attract more attention from the target viewer relative to a
population-optimized layout. Note that for Viewer 2, the population-
optimized layout is the same as the personalized one.

One limitation of the current optimizer is that it cannot handle
groupings of GUI elements. To address this, future work could
entail adding grouping constraints so as to let optimization take
advantage of element-grouping.
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Figure 4: Results of our population-level scanpath predictions with natural scenes.
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Figure 5: The population-level scanpath prediction results with GUIs.
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Figure 6: Qualitative comparison over a broad spectrum of scanpath models, applied to natural scenes. Our model predicts
more realistic scanpaths than others did. Also, it exhibits greater accuracy for individual fixation points. For a fair comparison,
all models were trained on OSIE.
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Qualitative comparison over a broad spectrum of scanpath models applied to GUI images. Our model both predicted more realistic scanpaths
than others and was more accurate with regard to individual fixation points. For the best possible comparison, all models apart from the

Itti–Koch one (not deep-learning-based) and DeepGaze++ were trained on UEyes.
Qualitative comparison over a broad spectrum of scanpath mod-

els applied to GUI images. Our model both predicted more realis-
tic scanpaths than others and was more accurate with regard to
individual fixation points. For the best possible comparison, all
models apart from the Itti–Koch one (not deep-learning-based) and
DeepGaze++ were trained on UEyes.

Figure 7:
Qualitative comparison over a broad spectrum of scanpath
models applied to GUI images. Our model both predicted
more realistic scanpaths than others and was more accurate
with regard to individual fixation points. For the best pos-
sible comparison, all models apart from the Itti–Koch one
(not deep-learning-based) and DeepGaze++ were trained on
UEyes.
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Ground Truth Itti-Koch DeepGaze III DeepGaze++ PathGAN Pretrained

PathGAN (UEyes) PathGAN++ (UEyes) SaltiNet (UEyes) UMSS (UEyes)

ScanGAN (UEyes) ScanDMM (UEyes) Chen et al. Method (UEyes) Our Method

Figure 8: Plots of ground-truth and predicted gaze directions. Analyzing saccade bias yields insight related to directions and
distances between consecutive fixation points. For instance, real-world gaze directions’ convergence toward the right and
bottom of the images, with greater distances observed particularly near the right, suggests a preference for directing the gaze
from left to right (with fairly large motions) and from top to bottom. Our model captures this property better than others do.
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Ground Truth Itti-Koch DeepGaze III DeepGaze++ PathGAN Pretrained

PathGAN (UEyes) PathGAN++ (UEyes) SaltiNet (UEyes) UMSS (UEyes)

ScanGAN (UEyes) ScanDMM (UEyes) Chen et al. Method (UEyes) Our Method

Figure 9: For each scanpath-prediction model, the percentage of the elements of each type visited and the same for elements
returned to. Of the models evaluated, ours produced the estimation closest to the ground truth. The “Visited” figure is calculated
from dividing the count of visited elements by the number of elements belonging to the element-type class in question, across
all GUI images. We consider an element re-visited when it is subject to two or more non-consecutive fixations in the sequence.
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Figure 10: Scanpaths personalized for two viewers, illustrating our model’s ability to generate these by means of only a few
scanpath samples from each viewer (note that “Viewer 1” and “Viewer 2” are generic terms; the viewers are not the same across
all examples).
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Figure 11: Example scanpath predictions for several distinct viewers.
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