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Figure 1: We develop a novel predictive model for scanpaths that represents the first approach to account for individual-level
differences and diverse stimuli, from both natural scenes (e.g., landscapes and buildings) and artificial ones (e.g., user interfaces
and information graphics). The predictions address a scanpath’s spatial and temporal characteristics – that is, a sequence of
fixation locations together with the duration of each. The model can generate an “average” scanpath to capture population-level
tendencies but also scanpaths personalized for individual viewers from a few scanpath samples, thereby reflecting each viewer’s
unique preferences and viewing behaviors. These illustrative plots use a color gradient, from green to blue, to denote the
temporal progression of each scanpath. Fixation points are denoted by circles, the radii of which represent fixation duration.

ABSTRACT
From a visual-perception perspective, modern graphical user inter-
faces (GUIs) comprise a complex graphics-rich two-dimensional
visuospatial arrangement of text, images, and interactive objects
such as buttons and menus. While existing models can accurately
predict regions and objects that are likely to attract attention “on
average”, no scanpath model has been capable of predicting scan-
paths for an individual. To close this gap, we introduce EyeFormer,
which utilizes a Transformer architecture as a policy network to
guide a deep reinforcement learning algorithm that predicts gaze
locations. Our model offers the unique capability of producing per-
sonalized predictions when given a few user scanpath samples. It
can predict full scanpath information, including fixation positions
and durations, across individuals and various stimulus types. Addi-
tionally, we demonstrate applications in GUI layout optimization
driven by our model.
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1 INTRODUCTION
A fundamental goal in the design of graphical user interfaces (GUIs)
is to guide users’ attention toward discovering relevant informa-
tion and possibilities for interaction [49]. However, modern GUIs’
graphics-rich visuospatial arrangement of text, images, animations,
and numerous interactive objects (buttons, menus, etc.) makes it
increasingly difficult to predict and direct visual attention for dis-
tinct individuals and groups [19, 26–28]. Furthermore, GUI design
is not the only factor in eye movements – idiosyncratic features
such as expectations and user-specific attention strategies exert an
influence. Therefore, predicting how the attention of a given user is
going to evolve over time is technically challenging. Breakthroughs
in this space would afford the design of personalized visual flows,
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reduce clutter, and render user interfaces more engaging, usable,
and visually appealing overall [52].

Large individual differences have been reported in viewing pat-
terns [24]. To avoid the fallacy of predicting an “average scanpath”
with no correspondence to actual viewers’ behavior, models should
capture individual-to-individual variability in viewing patterns.
Such models would open routes to new applications: they could
supply predictions for an audience segment of interest or even for
individual viewers. Effective solutions to this challenge would ad-
vance applications of human-attention models in visual computing
and related domains.

Prior work has focused primarily on saliency maps, which rep-
resent eye-movement data via density maps for the images [20].
However, as static representations, these overlook temporal infor-
mation. In contrast, scanpaths contain a wealth of information on
fixations, retaining details of the order in which objects and regions
are attended to, accompanied by the respective duration [7, 24, 41].
Scanpaths are, therefore, first-order models of human vision from
which second-order measurements such as saliency maps can be de-
rived, while the converse is not true. In addition, prior research into
scanpath modeling has centered predominantly on natural scenes.
For making these models more generalizable, unified models that
can work with multiple classes of stimuli are crucial. The problem
is that visual attention hinges on the stimulus type, so viewing
patterns can differ greatly between, for instance, Web sites and
mobile GUIs [35]. Any improvement in scanpath-based predictive
modeling will immediately carry over to practical applications. For
example, the models would help designers to understand visual
flows and to adjust their designs such that users are encouraged to
view the GUI elements in the desired order [44].

To address this gap, we present EyeFormer, a scanpath model for
free-viewing tasks. It can accurately predict both population- and
individual-level spatiotemporal characteristics of viewing behaviors
acrossmultiple stimulus types.We formulated fixations’ positioning
as a reinforcement learning (RL) problem and used a Transformer
architecture as a policy network guiding the selection of each se-
quence’s subsequent fixation. Transformers have proven effective in
various tasks, in fields from language to vision [6, 17, 18, 63]. Their
capability of modeling long sequences [36] makes them especially
suitable for scanpath prediction. EyeFormer’s Transformer-guided
deep RL approach was designed to address three critical shortcom-
ings of current approaches. Firstly, predicting the order of fixations
from saliency maps via their probability distribution [10, 37] is
inherently hard because such representations lack temporal infor-
mation. The second issue stems from post-processing steps im-
plemented to prevent the excessive clustering of fixations that is
characteristic of density-based approaches [24] (for instance, in-
hibition of return [20] is applied to prevent repeated fixation at
a previously identified position in a saliency map). Because these
steps are not learnable from data [13], one cannot formulate proper
loss terms derived from them. Thirdly, though recent advances such
as PathGAN [3] have brought progress toward handling fixation du-
ration, accuracy in predicting fixation points remains limited since
these techniques often generate points outside the areas of interest.

EyeFormer is the first model to predict full scanpaths at both
individual and population level, including fixations with coordi-
nates and duration both. It is unique in its ability to predict an

individual’s viewing behaviors when given a few sample scanpaths
from such a viewer. Moreover, we find that EyeFormer compares
favorably to prior scanpath models by the vast majority of metrics
for both GUIs and natural scenes in its population-level scanpath
prediction. It accurately predicts both spatial order (“where”) and
temporal (order and duration) characteristics of scanpaths with
both of these scene types. Further, we develop an application of
personalized scanpath prediction for creating personalized GUI
layouts by considering the viewing order and fixation density of
GUI elements. In addition, we can generate a single optimized GUI
layout that shows minimal variability across individuals, to attract
attention to desired elements. We have made our code available at
https://github.com/YueJiang-nj/EyeFormer-UIST2024.

In summary, this paper makes the following contributions:
(1) We propose EyeFormer, a deep RL solution incorporating

the Transformer architecture that predicts both spatial and
temporal characteristics of scanpaths, thus yielding a com-
prehensive understanding of viewers’ viewing behaviors.

(2) It shows how our model generates personalized scanpaths
via only a few scanpath samples from the relevant viewer,
whereby the model can capture and reflect each user’s view-
ing behaviors and preferences.

(3) We present quantitative and qualitative evaluations demon-
strating that the proposedmodel performs as well as or better
than the state-of-the-art models at population-level scanpath
prediction for GUIs and natural scenes.

(4) We demonstrate an application of personalized GUI opti-
mization facilitated by personalized scanpath prediction.

2 RELATEDWORK
Scanpath models predict sequences of fixations for a given im-
age. This task is more challenging than predicting (dense) saliency
maps because the order of the (discrete) fixations must be predicted.
All previous research has concentrated on modeling scanpath pat-
terns at population level (i.e., employing an “average-user” model),
while none has focused on the prediction of personalized scan-
paths. Therefore, we conducted a comprehensive review of the
approaches to population-level scanpath prediction as groundwork
for extending these techniques to individuals’ level by using a
novel Transformer-based architecture. Prior work can be classed
into three main groups on the basis of how they have attempted to
derive sequential information: 1) computing it post hoc from den-
sities captured in saliency maps, 2) directly predicting sequences,
and 3) formulating this as a sequential control problem via RL. Our
evaluation compares our EyeFormer model against several models
mentioned next.

2.1 Saliency-Map-Based Scanpath Prediction
Saliency maps, although they do not explicitly contain temporal
information, can be used to estimate scanpaths. Itti et al. [20] in-
troduced an Inhibition of Return (IOR) mechanism to this end. It
samples a starting fixation and “discourages” future fixations from
returning to it, thus producing a richer sequence. While several
studies have refined the idea [2, 8, 33, 37, 48, 65, 68, 69], methods
of this sort still face challenges in three respects: they (i) neglect
some key temporal factors, specifically fixation duration; (ii) lack a
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coherent ranking order for the fixations; and (iii) cannot serve in
loss terms, since they are non-differentiable.

2.2 Predicting Fixation Sequences
Some attempts to resolve these challenges have entailed sequen-
tially sampling fixations from pre-generated Gaussian distributions
and integrating well-designed supervised loss terms. This strate-
gic choice enforces a meaningful order among the fixation points.
For instance, IOR-ROI [8, 54], ScanpathNet [10], and Visual Scan-
Path Transformer [45] predict fixation distributions through a pa-
rameterized Gaussian mixture for generating such distributions.
GazeFormer [41] incorporates a Transformer-based architecture for
goal-oriented viewing tasks, and ScanDMM [53] utilizes a Markov
model to represent fixation distributions. These models suffer from
accumulation of error [46], whereby errors in previously generated
points affect the prediction of the following points. Other models
directly predict fixation sequences. Verma and Sen [62] predicted
fixations by means of a grid-based representation in which each
fixation point is tied to a specific region. PathGAN [3] and Scan-
GAN [38], in turn, apply a GAN-based architecture to generate
fixation sequences; however, GAN-based scanpath models show
such limitations as clustering of fixation points toward the image’s
center and reduced accuracy in predicting fixation points (which
sometimes get placed outside the areas of interest). Also notewor-
thy is NeVA [51], which addresses downstream visual tasks with
unseen datasets by relying on existing pre-trained models for the
task rather than simulating human scanpaths.

2.3 Reinforcement Learning for Scanpath
Prediction

Studies have examined RL’s potential in formulating scanpaths
as a sequential control problem [5, 42]. For example, Minut and
Mahadevan [40] proposed an RL model for visual search tasks
wherein an agent learns to focus on relevant areas to locate a target
object in a cluttered environment. Ognibene et al. [43] employed
RL using an eye-centered potential action map that accumulates
possible target locations over fixations, and Yang et al. [72] used
inverse RL for predicting the scanpaths involved in a visual search
task. In other work, Xu et al. [71] applied deep RL specifically to
predict head-movement-related scanpaths for panoramic videos.

Recent work by Chen et al. [7] discretized fixation positions by
representing each image as a grid and predicting the cell in the grid
corresponding to a particular fixation. Inspired by policy gradient
methods applied in discrete token generation for visual caption-
ing [47], Chen et al. adopted their policy gradient to optimize for
non-differentiable metrics in their discrete tokenizing. The posi-
tion discretization offers the advantage of optimizing a finite set of
discrete actions rather than a continuous and hence infinite space.
However, the artificiality of discretization brings coarser fixation
representation, which leads in turn to loss of precision/information.
The challenge with continuous control is that a continuous range of
control encompasses an infinitude of feasible actions [57]. Against
this backdrop, we construct our fixation prediction as a continuous
value generation task and turn to parametric functions for Gauss-
ian distributions over actions, optimized by means of our designed
rewards.

W x H Displaya) b) c)

Fixation

Inhibition 
Area

Figure 2: The mechanism of adapting a display’s inhibition-
of-return area to compute the salient-value reward involves
modifying the radius of the inhibition area, which is deter-
mined by the disparity between the size of the saliency map
and the size of the image as displayed. a) The diameter of
the display’s inhibition areas𝑚display is commensurate with
a human’s visual angle. b) Hence, we compute𝑚orig, the di-
ameter for the corresponding inhibition areas for the input
image with size𝑤I × ℎI . c) The image needs resizing to the
dimensions𝑤inp ×ℎinp, to correspond to the input image size
required by the model. The inhibition areas are rendered,
accordingly, as ellipses with radii𝑚𝑤 and𝑚ℎ .

3 METHOD
EyeFormer performs scanpath predictions as sequential generation
of fixation points, taking preceding fixations and the scene into
account together as its state. The main challenges we tackle are
related to 1) generating both spatial and temporal information on
fixation points with parametric distributions, 2) optimizing a scan-
path with non-differentiable objectives, and 3) capturing individual-
specific viewing differences to predict personalized scanpaths. We
propose a Transformer-guided RL approach (depicted in Figure 3)
for three key reasons: 1) The Transformer architecture lets us cap-
ture long-range sequential dependencies from previous fixations
with Gaussian distributions [61]. 2)We find RL preferable to directly
optimizing the loss since some loss terms’ non-differentiable nature
precludes direct optimization. The RL framework enables optimiz-
ing scanpaths with non-differentiable reward functions [56], such as
terms for computing salient values with IOR. 3) Transformer-only
models suffer from the above-mentioned error-accumulation issues:
prediction errors from previously generated points propagate to
subsequent predictions. During training, the model is fed the previ-
ous ground truth rather than its own predictions, so a mismatch
arises during inference when it must rely on those potentially inac-
curate predictions. We deal with this issue by using RL to train the
model to generate sequences as it will during inference, optimizing
its policies through continuous feedback and adjustments in line
with cumulative rewards over time.

3.1 Problem Formulation
Given an image I, our technique generates a scanpath of length 𝑇 :
a sequence of ordered fixation points 𝑝1:𝑇 = (𝑝1, . . . , 𝑝𝑇 ) capturing
the spatial and temporal information of the human gaze. Each fixa-
tion 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 ) is a three-dimensional vector representing the
normalized point coordinates 𝑥𝑖 ∈ [0, 1] and 𝑦𝑖 ∈ [0, 1] alongside
the third dimension, fixation duration expressed as 𝑡𝑖 ∈ (0, +∞).
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3.2 Environment, State, and Action
Our predictive model acts as an agent that interacts with the envi-
ronment, where the latter produces the state of both input image
I and previous fixation points. The 𝜃 parameters dictate the policy,
𝜋𝜃 , whereby the model generates an action as a prediction for the
next fixation point 𝑝𝑖 , sampled from the distribution produced by
the policy model. This process is formulated as 𝜋𝜃 (𝑝𝑖 |𝑝1:𝑖−1,I).

3.3 Reward Function
After each action, the agent receives a salient-value reward 𝑟sal
that expresses that action’s contribution to the full scanpath. Once
the entire scanpath is generated, the agent is exposed to a reward
𝑟dtwd, calculated by means of the Dynamic Time Warping with
duration (DTWD) metric discussed below. The training’s objective
is to minimize the negative expected reward, which is equivalent
to maximizing a positive reward:

L(𝜃 ) = −Ep̂∼𝜋𝜃 𝑟 (p̂), (1)

where p̂ = (𝑝1, ..., 𝑝𝑇 ) and where 𝑝𝑖 represents the 𝑖th fixation
sampled from the model-generated distribution. The reward func-
tion combines the DTWD metric 𝑟dtwd, assessing the similarity
between the predicted and the ground truth (GT) scanpath, with
the summed salient-value reward for each fixation point along the
scanpath generated 𝑟sal, thus:

𝑟 (p̂) = −𝑟dtwd (p̂) +
𝑇∑︁
𝑖=1

𝑟sal (𝑝𝑖 ) . (2)

3.3.1 Dynamic Time Warping with duration. Dynamic Time Warp-
ing (DTW) is widely used for comparing two sequences that may
differ in length [4, 50]. It is useful for scanpaths because it finds
an optimal alignment between the two scanpaths (ground truth
and predicted ones) and computes the distance without missing
any critical features. We implement DTW extended for duration
to consider both spatial and temporal characteristics of scanpaths.
Specifically, EyeFormer spatially aligns scanpaths by using fixation
positions, then computes DTWD values as 3D vectors (𝑥,𝑦, 𝑡) for
fixations’ position and duration. By incorporating DTWD compu-
tations over the full scanpath into the reward function, we sought
to generate scanpaths closer to the ground truth trajectories and
duration.

3.3.2 Salient values. EyeFormer applies rewards for salient values
to encourage fixations in salient areas. To avoid repeatedly fixating
on the same location in the image, we implement an IOR mecha-
nism to model the relevant tendency of the human visual system.
We establish inhibition areas (as regions of the saliency map) for all
the previously predicted fixation points. If the new predicted point
falls within these areas, it does not elicit any additional reward;
the reward corresponds to the salient value on the saliency map
in all other cases. Importantly, predicted scanpaths can still return
to an already-visited element, just as real-world ones may, since
DTWD encourages fixations to revisit the most salient areas and
our chosen IOR radius (explained next) is not so large as to preclude
revisiting an element. We denote the display’s dimensions as𝑊 ×𝐻 .
It sets the diameter of that display’s inhibition areas𝑚display to be
consistent with a human’s visual angle, the angle an object sub-
tends at the eye (see Figure 2a). Our choices were informed by the

diameter-setting suggested by Klein et al. [32] and further analyzed
by Emami et al. [13]. Finally, we compute𝑚orig, the diameter for
the corresponding inhibition areas for the input image with size
𝑤I × ℎI (see Figure 2b):

𝑚orig =
𝑚display

min
(
𝑊 /𝑤I , 𝐻/ℎI

) (3)

. Note that preparing the image for processing necessitates resizing
it to𝑤inp×ℎinp, which corresponds to the size that the policy model
requires for splitting the input image into patches. Using a square
input image simplifies computations of this type [12]; accordingly,
we resize the inhibition areas from circles to ellipses, while account-
ing for potential distortions (see Figure 2c). Any point (𝑥,𝑦) in the
image that satisfies the following condition gets inhibited (resulting
in a salient-value reward of 0) and is omitted from the saliency map:

(𝑥 − 𝑥𝑖 )2

𝑚2
w

+ (𝑦 − 𝑦𝑖 )
2

𝑚2
h

≤ 1, where𝑚w=
𝑤inp

𝑤I
𝑚orig, 𝑚h =

ℎinp

ℎI
𝑚orig,

(4)

where (𝑥𝑖 , 𝑦𝑖 ) is the coordinates for the 𝑖th predicted fixation point.
Hence, salient-value reward 𝑟sal at step 𝑖 is defined as the salient
value of predicted fixation 𝑝𝑖 on the saliency map with IOR applied.

3.4 Policy Network
A two-stage approach characterizes the policy network for scan-
path prediction. The visual representation of any imageI is learned
through the image encoder (E), after which a scanpath gets gen-
erated by means of the fixation decoder (D). For population-level
scanpath prediction, the visual embedding E(I) is taken as input
to the decoder. For individual-level prediction, feeding the decoder
this input along with a viewer embedding, 𝑒𝑢 , allows the model to
generate personalized scanpaths for separate viewers.

3.4.1 Vision encoder. We use a Vision Transformer (ViT) [6] net-
work as the vision encoder. Specifically, the image is resized to a
resolution of𝑤inp ×ℎinp and split into 𝑛I non-overlapping patches
for the vision encoder. Splitting functions mainly to speed up the
model’s inference, capture local information, and obtain global
information from relationships between patches. Next, a linear pro-
jection, a convolution layer, is applied to convert these patches into
single-dimension embeddings 𝑒𝑘I ∈ R𝑑I thus:

𝑒 Ĩ = [𝑒𝐶𝐿𝑆I , 𝑒1I , . . . , 𝑒
𝑛I
I ] + 𝑒𝑝𝑜𝑠 , (5)

where 𝑒𝐶𝐿𝑆I is a learnable vector for the image context,
[𝑒𝐶𝐿𝑆I , 𝑒1I , . . . , 𝑒

𝑛I
I ] is a matrix from concatenating the vectors

𝑒𝐶𝐿𝑆I , 𝑒1I , . . . , 𝑒
𝑛I
I , and 𝑒𝑝𝑜𝑠 ∈ R𝑑I×(𝑛I+1) is the positional matrix

reflecting the position context of the image patches. Finally, we
apply a vision encoder E(·) based on a 12-layer version of the
ViT model [12]. By employing per-patch convolution and using
a Transformer to combine patch embeddings, the ViT model ex-
presses the relationship for each patch and lets us derive the final
image embedding, denoted as E(𝑒 Ĩ ). We consider an alternative
vision encoder, using a residual neural network (ResNet), also; the
supplementary materials include comparison between it and the
mechanism ultimately chosen.
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Figure 3: The overview of our Transformer-guided RL framework for scanpath prediction, comprising several components:
the environment, which produces the state of the input image and previous fixation points; the Transformer model, which
furnishes the policy; the policy-generated action, predicting the next point in the scanpath; and the reward function (obtained
from evaluating the action against ground truth), through which the policy gets updated. Within the Transformer policy model,
the image patches, resized and split from the input image, are fed to the vision encoder for generation of the image embedding;
the viewer encoder generates the viewer embedding, only used in individual-level prediction to distinguish between viewers;
and the fixation decoder takes the image and viewer embeddings along with previously generated fixations to generate the next
points along the scanpath in sequence. During training, the model begins by sampling the next point from the distribution
generated by the policy in light of the current state. This sampled point is used to update the state of the environment, and
incorporating the reward indicated via ground truth serves to update the Transformer policy model. During testing, we use the
policy model to generate the scanpaths directly.

3.4.2 Fixation decoder. To generate fixation points, 𝑝𝑖 , we use a
multi-layer Transformer decoder, D. It takes the image embedding
E(𝑒 Ĩ ) alongside the previously generated points denoted by 𝑝1:𝑖−1
as input to generateD(E(𝑒 Ĩ ), 𝑝1:𝑖−1). This allows previous fixation
points to influence points further along the scanpath. We set the
first fixation to be at the center of the screen since the conditions
behind most eye-tracking datasets involve asking participants to
look at the center of the display before images get presented [24, 70].
For the given state (the previously predicted fixation points and the
input image), the action (the next prediction for a fixation point) is

𝜋𝜃 (𝑝1:𝑇 |I) = 𝜋𝜃 (𝑝1 |I)
𝑇∏
𝑖=2

𝜋𝜃 (𝑝𝑖 |𝑝1:𝑖−1,I) . (6)

The policy 𝜋𝜃 is represented as a Gaussian distribution N(𝜇𝑖 , 𝜎𝑖 ).
Alternatively, it could be represented as a mixed Gaussian distri-

bution
𝐾∑
𝑘=1

𝜆𝑖𝑘N(𝜇𝑖𝑘 , Σ𝑖𝑘 ) with a total of 𝐾 Gaussian components,

where 𝜆𝑖𝑘 denotes the weight of the 𝑘th Gaussian component, and
Σ𝑖𝑘 denotes the covariance matrix specific to the component at step
𝑖 . These variables for determining the distribution are sequentially
generated by the decoder. We present more implementation details
and a comparison between using a Gaussian and a mixed Gaussian
distribution in supplementary materials.

3.5 Predicting Personalized Scanpaths
To distinguish between individual viewers, we select a two-layer
Transformer architecture as the viewer encoder E𝑢 . This facilitates
prediction of individual-level scanpaths considerably. The training
process trains the model from the training users in the dataset. The
viewer encoder is taught to allow each viewer’s distinct viewing
behaviors to be encoded in a separate embedding space. In the test
process, when given a new viewer, the model updates the viewer
encoder with a few scanpaths from that viewer by backpropagating
from the scanpath samples. Once the model has updated the viewer
encoder, it can predict scanpaths specific to this unique viewer,
thereby customizing its predictions for this individual’s viewing
behaviors (note that this encoder is not applied for population-level
predictions).

Specifically, the image representation, E(𝑒 Ĩ ), serves as the input
query, while viewer embedding 𝑒𝑢 serves as the key and value
in the cross-attention mechanism within the viewer encoder. The
viewer embedding is a learnable matrix. For generation of fixations,
the output of this encoder, E𝑢 (𝑒 Ĩ , 𝑒𝑢 ), is directed to the fixation
decoder.

3.6 Policy Gradient
To compute the gradient of the objective function ∇𝜃L(𝜃 ), our
method employs the REINFORCE algorithm [47, 67], which offers
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a Monte Carlo variant of a policy-optimization technique com-
monly used in RL settings [56]. Under this algorithm, the agent
accumulates samples from episodes by executing its current policy
and utilizes those samples to update the policy’s parameters itera-
tively. The REINFORCE algorithm aims to maximize the cumulative
expected reward across sequential actions by approximating the
gradient of the expected reward for the current policy parameters.
By adjusting these parameters iteratively in accordance with the
gradient estimate, the algorithm attempts to enhance the policy’s
performance over time. This algorithm is rooted in the insight that
one can obtain the expected gradient of a non-differentiable reward
function as follows:

∇𝜃L(𝜃 ) = −Ep̂∼𝜋𝜃 [𝑟 (p̂)∇𝜃 log𝜋𝜃 (p̂|I)] . (7)

To approximate the expected gradient, we use a single Monte-
Carlo sample p̂ = (𝑝1, ..., 𝑝𝑇 ) from the policy 𝜋𝜃 for each training
example in the minibatch:

∇𝜃L(𝜃 ) ≈ −𝑟 (p̂)∇𝜃 log𝜋𝜃 (p̂|I) . (8)

REINFORCE with a baseline. Our technique uses a baseline 𝑏
to assess the environment’s expected reward without any actions,
thus generalizing the policy gradient obtained from REINFORCE.
Applying this algorithm with a baseline allows us to estimate the
advantage yielded by an action – i.e., the difference between the
actual reward obtained and that expected from the baseline envi-
ronment. By subtracting the baseline value, we reduce the variance
of the gradient estimation, thereby arriving at a stabler optimiza-
tion process. The gradient of the loss with respect to the 𝜃 policy
parameters is then obtained as

∇𝜃L(𝜃 ) = −Ep̂∼𝜋𝜃 [(𝑟 (p̂) − 𝑏)∇𝜃 log𝜋𝜃 (p̂|I)] . (9)

For each step in the training, our technique approximates the
expected gradient with a single sample p̂ ∼ 𝜋𝜃 :

∇𝜃L(𝜃 ) ≈ −(𝑟 (p̂) − 𝑏)∇𝜃 log𝜋𝜃 (p̂|I) . (10)

In the discrete space, Rennie et al.’s conceptualization [47] serves
as a foundational framework, wherein𝑏 is estimated bymeans of the
reward obtained from the policy’s greedy search. For operating in
a continuous space, however, our approach diverges from theirs: at
each step, the operation of our policy necessitates computation of 𝑏,
defined as the reward associated with the mean of multiple samples
drawn from the policy – in essence, the mean of the distribution
generated by the policy. Consequently, the expected gradient is
calculated as

∇𝜃L(𝜃 ) ≈ −(𝑟 (p̂) − 𝑟 (𝑠𝑔[𝝁]))∇𝜃 log𝜋𝜃 (p̂|I), (11)

where 𝝁 = (𝜇1, . . . , 𝜇𝑇 ) and 𝑠𝑔[·] constitute a stop-gradient opera-
tor having partial derivatives of 0.

4 EXPERIMENTS
Our experiments attest to the new model’s unique capability of
producing personalized predictions when given a few user scanpath
samples. Below, we present the experiments in connection with a
comprehensive evaluation of EyeFormer against multiple recently
developed models and across two very different classes of stimuli:
GUIs and natural scenes. Our examination covered a large number
of baselines and of evaluation metrics suited to scanpath models.

4.1 Datasets
Both datasets in our experiments – the GUI-oriented UEyes [24, 25]
and OSIE [70], from natural scenes – feature multiple scanpaths
for each image, from numerous viewers. The two datasets were
collected by eye trackers that output fixation points and their dura-
tions, rather than saccades.

4.1.1 GUIs and information graphics. The UEyes dataset provided
us with eye-tracking data (up to 7 s) from 62 participants who
viewed 1,980 images drawn from four common types of GUI and
information graphics (posters, desktop GUIs, mobile GUIs, and
webpages). Collecting the data with an eye tracker in a laboratory
setting guaranteed precise fixation coordinates in the X–Y plane,
and the coordinate values were subject to participant-specific cali-
bration accounting for relevant human factors such as eye–display
distance [35]. We used the same training/test image split as Jiang
et al. [24]: 1,872 images in the training set and 108 in the test
set, with the four GUI types distributed evenly within each set. In
addition, we established a training/test split for individual-level
prediction, randomly assigning 53 viewers to the training set (85%)
and the remaining nine to the test set (15%). Our model was trained
on the data collected from when the training viewers looked at the
GUIs shown in the training images. Most scanpaths in UEyes have
roughly 15 fixations (the average number of fixations per image
is 15.3). Further details of the dataset and implementation can be
found in the supplementary materials.

4.1.2 Natural scenes. The OSIE dataset, from free viewing of nat-
ural scenes, comprises 700 images with associated eye-movement
data from three seconds of viewing by 15 participants. With OSIE,
which has been widely used in previous research [7, 54], we applied
the same split used in prior work (80% training, 10% validation, and
10% testing data). We did not use datasets such as SALICON’s [21],
since they take mouse movements as a proxy for eye movements,
whereas EyeFormer is designed for replicating actual scanpaths
recorded by eye trackers.

4.2 Metrics
We assessed performance via metrics commonly employed for scan-
path evaluation [1, 15]. All experiments used coordinates 𝑥 ∈ [0, 1]
and 𝑦 ∈ [0, 1], normalized for image size (px/px, dimensionless),
and fixation duration 𝑡 ∈ [0, +∞) in milliseconds.

4.2.1 Dynamic Time Warping (DTW). DTW serves as a standard
metric for similarity between two temporal sequences even when
they differ in length [4, 50]. It identifies the optimal match and
calculates the distance between two scanpaths in a manner that
preserves essential features.

4.2.2 Time Delay Embedding (TDE). By focusing on assessment
of similarities at sub-scanpath level [59, 64], TDE offers evaluation
more nuanced than DTW’s, which attends only to overall compari-
son of entire scanpaths.

4.2.3 Eyenalysis. Finding the closest mapping between fixation
points on the two scanpaths, Eyenalysis takes each fixation point
along the first scanpath and identifies the spatially closest fixation
point on the second, and vice versa [39]. It thenmeasures the average
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Model DTW ↓ TDE ↓ Eyenalysis ↓ DTWD ↓ MultiMatch ↑
Shape Direction Length Position Duration Mean

Personalized to Other Viewers 4.152 ± 1.161 0.123 ± 0.030 0.036 ± 0.017 5.070 ± 1.088 0.943 0.733 0.935 0.821 0.731 0.833
Personalized to Target Viewer 4.058 ± 1.135 0.121 ± 0.029 0.036 ± 0.017 4.996 ± 1.078 0.943 0.737 0.936 0.824 0.731 0.834

Table 1: We compare the model personalized to the target test viewer against the model personalized to other test viewers to
quantify the effectiveness in capturing the characteristics of individual viewers on the UEyes dataset.
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Figure 4: Scanpaths personalized for two viewers, illustrating our model’s ability to generate these by means of only a few
scanpath samples from each viewer (note that “Viewer 1” and “Viewer 2” are generic terms; the viewers are not the same across
all examples). More examples are presented in the supplementary materials.

distances for all the closest fixation pairs, thereby emphasizing
evaluation of individual fixations instead of the sequences.

4.2.4 Dynamic Time Warping with duration (DTWD). Our exten-
sion of DTW to capture duration empowered considering fixations’
position and duration both. We align two scanpaths on the basis
of their optimal match of (𝑥,𝑦) coordinates and calculate the cu-
mulative distance by computing, for each pair of aligned points,
the distance between the two three-dimensional vectors (𝑥,𝑦, 𝑡)
representing the spatiotemporal information.

4.2.5 MultiMatch. With MultiMatch metric [11], five variants fa-
cilitate assessing important aspects of fixations along scanpaths:
shape, direction, length, position, and duration. While DTWD eval-
uates spatial and temporal characteristics, MultiMatch excels at
capturing additional features such as shape, direction, and length
and gives an overall evaluation based on all these features.

5 RESULTS
The results demonstrate that our model 1) predicts individual-level
scanpaths when given a few viewing samples from the user; 2) com-
pares favorably with other models for population-level scanpath
prediction; and 3) predicts both spatial and temporal characteristics
of scanpaths with stimuli that include GUI images, information
graphics, and natural scenes.

5.1 Individual-Level Scanpath Prediction
Prior research has not addressed the challenge of predicting per-
sonalized individual-level scanpaths, partly because full re-training
for each new viewer, with more data, is impractical. Our model
achieves a workable balance by generating scanpaths tailored to
each person’s viewing behaviors and idiosyncrasies while still per-
mitting a single model’s application for all viewers, without the
burden of re-training. We verified our model’s ability to generate
personalized scanpaths by proceeding from a few scanpath samples
from the individual, thus confirming that the model can effectively
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Figure 5: Our population-level scanpath prediction proves to be close to the ground truth with regard to fixation positions,
ordering, and duration. The supplementary materials present further examples.

capture each viewer’s viewing preferences/behaviors and reflect
them in its output.

When encountering a new viewer with a few samples avail-
able, the model updates the viewer embedding with 𝑛path scan-
paths obtained from that viewer (in our experiments, 𝑛path = 50).
Fine-tuning the model involves backpropagating from the scanpath
samples so that it can predict scanpaths specific to this unique
individual’s viewing behaviors.

Since no established baseline method at present can function as a
point of comparison for this personalization approach, we compared
the model’s tailoring for the target test viewer with its tailoring
for other test viewers to quantify its effectiveness in capturing
the characteristics of individual viewers. The results (shown in
Table 1) show that the errors in the former setting are smaller than
those of personalization for other test viewers. We conclude, then,
that the personalized model can better address individual-specific
characteristics. Illustrative examples presented in Figure 4 capture
the nature of the individual-level scanpath prediction qualitatively;
in addition, the supplementary materials provide more results and
explain the relationship between sample quantity and performance.

5.2 Population-Level Scanpath Prediction
To assess how well our model predicts the spatiotemporal infor-
mation of scanpaths, we compared its performance with preex-
isting scanpath models’. We evaluated the model with both GUIs
and natural scenes to check whether it can be generalized to dif-
ferent types of images. For GUIs, we compared to Itti–Koch [20],
DeepGaze III [33], DeepGaze++ [24], SaltiNet [2], UMSS [65], Path-
GAN [3], PathGAN++ [24], ScanGAN [38], ScanDMM [53], and the
model of Chen et al. [7]. Comparisons for natural scenes judged
EyeFormer against models focused on such scenes: Itti–Koch [20],
SGC [55], the model by Wang et al. [64], Le Meur et al.’s model [34],
STAR-FC [68], SaltiNet [2], PathGAN [3], IOR-ROI [54], Gaze-
Former [41], and Chen et al. [7]. While one of the baseline models,
GazeFormer, is a Transformer-based method designed for visual
search, directly comparing it with other methods is not possible
because GazeFormer requires a pre-specified target, which free-
viewing tasks do not provide. Therefore, we adapted GazeFormer
to free-viewing tasks by providing a blank target as input. For a
fair comparison, we trained all these models with the same dataset
split. We fed the models every individual scanpath from all the
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Figure 6: Annotated comparison between different models. The illustration alongside our model’s result, presenting the baseline
performance, is marked up to highlight particular limitations.

Model DTW ↓ TDE ↓ Eyenalysis ↓ DTWD ↓ MultiMatch ↑
Shape Direction Length Position Duration Mean

GUIs and Information Graphics (UEyes dataset)
Itti–Koch 6.249 ± 0.986 0.150 ± 0.025 0.047 ± 0.028 – 0.861 0.721 0.819 0.746 – –
DeepGaze III Pretrained 7.906 ± 2.466 0.274 ± 0.061 0.124 ± 0.076 – 0.937 0.567 0.886 0.746 – –
DeepGaze++ 5.454 ± 1.078 0.149 ± 0.032 0.047 ± 0.026 – 0.907 0.708 0.906 0.773 – –
PathGAN Pretrained 4.719 ± 1.387 0.192 ± 0.049 0.072 ± 0.037 – 0.940 0.579 0.892 0.800 – –
PathGAN 4.754 ± 1.185 0.147 ± 0.048 0.048 ± 0.025 – 0.943 0.716 0.935 0.797 – –
PathGAN++ 4.559 ± 1.182 0.146 ± 0.037 0.044 ± 0.022 – 0.943 0.706 0.933 0.807 – –
PathGAN w/ D 5.192 ± 1.422 0.204 ± 0.045 0.092 ± 0.038 6.431 ± 1.644 0.939 0.556 0.891 0.779 0.667 0.766
PathGAN++ w/ D 5.443 ± 1.466 0.202 ± 0.044 0.096 ± 0.043 6.667 ± 1.659 0.939 0.560 0.896 0.765 0.657 0.763
SaltiNet 7.042 ± 1.622 0.187 ± 0.057 0.063 ± 0.054 8.241 ± 1.487 0.907 0.715 0.897 0.691 0.579 0.758
UMSS 5.051 ± 1.592 0.155 ± 0.048 0.050 ± 0.026 6.495 ± 1.468 0.934 0.713 0.921 0.779 0.579 0.785
ScanGAN 4.815 ± 1.238 0.136 ± 0.034 0.040 ± 0.022 – 0.931 0.734 0.929 0.796 – –
ScanDMM 5.085 ± 1.317 0.138 ± 0.037 0.043 ± 0.027 – 0.931 0.729 0.928 0.784 – –
Chen et al. 4.335 ± 1.299 0.118 ± 0.034 0.037 ± 0.019 5.533 ± 1.250 0.939 0.725 0.926 0.823 0.720 0.827
GazeFormer 4.189 ± 1.204 0.141 ± 0.038 0.046 ± 0.023 5.262 ± 1.041 0.947 0.734 0.931 0.825 0.730 0.833
EyeFormer 4.069 ± 1.089 0.122 ± 0.029 0.036 ± 0.018 5.043 ± 1.052 0.942 0.748 0.940 0.825 0.750 0.841

Natural Scenes (OSIE dataset)
Itti–Koch 3.180 ± 0.756 0.176 ± 0.039 0.061 ± 0.027 – 0.859 0.653 0.811 0.748 – –
SGC 2.992 ± 1.067 0.194 ± 0.071 0.073 ± 0.046 – 0.922 0.652 0.890 0.768 – –
Wang et al. 3.798 ± 1.128 0.227 ± 0.073 0.096 ± 0.060 – 0.886 0.641 0.841 0.700 – –
Le Meur et al. 3.027 ± 0.797 0.160 ± 0.476 0.057 ± 0.028 – 0.892 0.653 0.865 0.770 – –
STAR-FC 3.375 ± 1.300 0.228 ± 0.091 0.090 ± 0.067 – 0.936 0.662 0.920 0.734 – –
SaltiNet 3.439 ± 0.861 0.191 ± 0.052 0.065 ± 0.032 3.860 ± 0.814 0.895 0.641 0.872 0.719 0.573 0.740
PathGAN 5.300 ± 1.197 0.323 ± 0.073 0.142 ± 0.085 5.454 ± 1.167 0.935 0.577 0.924 0.608 0.679 0.745
IOR-ROI 2.495 ± 0.809 0.160 ± 0.055 0.060 ± 0.039 2.955 ± 0.768 0.914 0.704 0.889 0.812 0.629 0.790
Chen et al. 2.183 ± 0.949 0.125 ± 0.056 0.045 ± 0.028 2.636 ± 0.865 0.944 0.653 0.924 0.847 0.689 0.811
EyeFormer 2.193 ± 0.831 0.115 ± 0.042 0.044 ± 0.026 2.562 ± 0.756 0.944 0.679 0.932 0.850 0.706 0.822

Table 2: Quantitative scanpath evaluation, with the Mean ± SD reported for each metric, attesting that our model outperforms
the baseline models by most metrics with both GUIs and natural scenes (“Pretrained” denotes testing via the pre-trained model,
while other models were trained with the same dataset; boldface highlights the best result column-wise; arrows indicate the
importance relation’s direction (e.g., ↑means “higher is better”); and dashes (“–”) indicate methods unable to predict duration).
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Figure 7: Qualitative comparison. The best baseline methods, from Chen et al. [7] and GazeFormer [41], are shown here.
Comparison to other scanpath models is provided in the supplementary materials.

viewers for each training image, helping the models learn the un-
derlying scanpath distribution. Note that we did not combine the
two datasets: all methods were trained on each dataset separately.
Training and analysis too remained separate.

5.2.1 Quantitative evaluation. To account for variations in image
sizes and minimize discrepancy-related errors, we normalized the
fixation points’ coordinates to the [0, 1] range. Specifically for train-
ing on natural scenes, we used the ResNet instead of the ViT mech-
anism as the vision encoder, for better comparison to other baseline
models since prior work with training on the OSIE data [70] used
a ResNet model as the encoder. Table 2 presents a comprehensive
comparison covering all the metrics. Our model proved at least as
good as the baseline models by most metrics, for GUIs and nat-
ural scenes both. The results indicate that it simulates scanpath
trajectories more realistically. Of the models tested, only PathGAN,
PathGAN++, SaltiNet, UMSS, IOR-ROI, GazeFormer, and Chen et

al.’s technique can predict temporal information. Chen et al., which
is one of the best baseline models, predicts positions and duration
separately; however, fixation positions and duration are highly cor-
related. GazeFormer, by relying on a Transformer model to generate
an entire scanpath in a single step, overlooks the local dependencies
and correlations between adjacent points. The fact that our model
excels by the DTWD and MultiMatch Duration metrics attests to
its capacity to yield more accurate results and also handle prediction
of temporal information.

5.2.2 Qualitative evaluation. Qualitative comparisons revealed that
the predictions made by our model lie closer to the ground truth
than those of the other models. Figure 5 presents population-level
prediction results showcasing the performance of EyeFormer. Fig-
ure 6 and Figure 7 provide comparison between our model and
the baseline ones (more results are available in the supplementary
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materials). While PathGAN++ and ScanGAN generate realistic tra-
jectories very well (thanks to their discriminative component), the
points they predict often fall outside the salient areas and tend
to lie in clusters. In contrast, DeepGaze++ performs well in locat-
ing fixation points, by applying post-processing to density maps.
Nevertheless, it generates fixations in incorrect order; on account
of the non-differentiable nature of the post-processing, the order
is not optimized. The Itti–Koch, SaltiNet, and UMSS techniques
generate scanpaths from saliency maps, encouraging fixations in
salient areas, but they too fail to optimize for correct fixation order.
Chen et al.’s technique tends to generate several clusters of closely
grouped points since they improved the prediction of fixations
without addressing the need to spread consecutive points out more.
In additional analysis, we computed the clustering-tendency error
via the Laminarity metric [1]. The Laminarity value of our model is
73.137, and that of Chen et al.’s is 178.072 (lower values are better).
. Its higher score indicates that the model of Chen et al. produces
fixation-clustering in locations where ground-truth fixations do
not cluster. Finally, ScanDMM focuses relatively strongly on text
elements. Our model assigns fixations to salient areas and attends
to the points’ order with greater precision. It accomplishes this
by using the salient-value reward (𝑟sal) to emphasize points that
lie within areas of interest and by employing the DTWD reward
(𝑟dtwd) to encourage more accurate trajectories.

5.3 Ablation Study
Table 3 presents the results from an ablation study we performed
on utilizing RL to produce both population- and individual-level
scanpaths. The results reveal that a Transformer-only model does
not yield satisfactory results and that incorporating RL greatly
enhances the prediction of fixations and their duration. With its
population-level prediction, our RL model brings an improvement
of 14.7% and 26.5%, respectively, by the TDE and the Eyenalysis
metric. This too is evidence that using RL increases the model’s
capacity to generate realistic fixations for scanpaths. As for fixation
duration, applying RL has a positive influence on prediction accu-
racy, demonstrated by the 4.8% improvement shown by the DTWD
metric. Similar effects are visible with the individual-specific pre-
dictions connected with training users (i.e., the trained model’s
prediction of scanpaths for GUI images when given the IDs of par-
ticular training users). Additionally, the results highlight that the
absence of either each type of reward or of inhibition of return
leads to a decline in overall accuracy. Results from further ablation
studies are included in the supplementary materials.

6 APPLICATION FOR PERSONALIZED VISUAL
FLOWS

EyeFormer enables handy prediction of individual-level scanpaths.
Demonstrating this capability in practice, we applied it to the prob-
lem of personalizing visual flows. In model-assisted flow design,
the designer identifies GUI elements intended to receive more atten-
tion than others [16]. Our goal was to support this by controlling
the flow of attention to selected elements. While prior work has
demonstrated model-assisted personalization of graphical layouts
[60], its focus has been solely on visual-search time, not visual flow.
In our scenario, the designer supplies a GUI layout and specifies

the desired visiting order for three or more elements that should be
fixated upon first (the most important ones). After this, our system
outputs both population- and individual-optimized layouts. Gener-
ation of the individual-specific layouts is based on the personalized
scanpath prediction results. Specifically, given a viewer with 𝑛path
scanpath samples (in our experiments, 𝑛path = 50), EyeFormer
generates corresponding layouts by proceeding from the predicted
scanpaths at individual level for this particular viewer.

6.1 Formulation of Optimization Problem
We expressed this application as a constraint optimization prob-
lem [22, 23, 29–31] that requires ascertaining positions and sizes of
elements for a GUI based on the predicted personalized scanpaths.
To address this problem, we built on an integer-programming-based
layout optimizer [9] that optimizes GUI layouts by considering
their elements’ packing, alignment, and preferred positioning. Ad-
ditionally, we introduced a constraint requiring adherence to the
designer-specified fixation order, along with an objective score
derived from EyeFormer’s predictions.

6.1.1 Fixation order constraint. We denote the order of the three
most important elements, elem1, elem2, and elem3, which should
be fixated upon earliest, as [elem1, elem2, elem3]. Extending the
list permits handling more elements, in a similar manner. Firstly,
for the predicted scanpath [𝑝1, 𝑝2, ..., 𝑝𝑇 ], the procedure identifies
the GUI element receiving fixations, per fixation point, denoted
as [elem𝑝1 , elem𝑝2 , ..., elem𝑝𝑇 ]. Secondly, [elem1, elem2, elem3] is
restricted to being a subset from the beginning of the dedupli-
cated sequence [elem𝑝1 , elem𝑝2 , ..., elem𝑝𝑇 ]; that is, the sequence
[elem𝑝1 , elem𝑝2 , ..., elem𝑝𝑇 ] begins with repeated occurrences of
elem1, followed by elem2 and subsequently elem3. This constraint
guarantees that the required fixation order specified by the designer
is honored.

6.1.2 Objective term for fixation duration. To define optimality fur-
ther, we applied a fixation-duration objective term for GUI layouts
that satisfy the required-order constraint. Where the fixations cor-
responding to the sub-sequence of repeated occurrences of elem1
followed by elem2 and then by elem3, described above, are denoted
as [𝑝1, 𝑝2, ..., 𝑝𝑀 ] (with 𝑝𝑀 being the final fixation before attention
moves to other elements), the objective is to select the layout whose
fixation durations for these elements sum to the maximal value:∑𝑀
𝑚=1 𝑡𝑝𝑚 .

6.2 Results
Figure 8 shows two resulting designs (more examples are provided
in the supplementary materials). Given an original GUI design and
an annotated sequence of the (three) most important GUI elements,
we generate both 1) the population-optimized layout and 2) a layout
personalized for each viewer. The population-optimized layout
relies on the population-level scanpath prediction, which serves
as the best compromise across viewers, while the viewer-specific
layouts are based on personalized scanpath prediction such that
each viewer follows the desired order and devotes maximal time to
the elements deemed important. Testing for 62 individual viewers
yielded the following results for the designs shown in the figure:
For “Design 1”, 56 viewers would follow the desired viewing order
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Model DTW ↓ TDE ↓ Eyenalysis ↓ DTWD ↓ MultiMatch ↑
Shape Direction Length Position Duration Mean

Population-Level Scanpath Prediction
Ours w/o RL 4.304 ± 1.309 0.143 ± 0.041 0.049 ± 0.024 5.299 ± 1.235 0.946 0.709 0.925 0.820 0.736 0.827
Ours w/o 𝑟sal 4.099 ± 1.192 0.137 ± 0.036 0.045 ± 0.023 4.981 ± 1.131 0.946 0.713 0.928 0.825 0.752 0.833
Ours w/o 𝑟dtwd 5.277 ± 1.009 0.139 ± 0.025 0.036 ± 0.018 6.733 ± 1.038 0.913 0.736 0.907 0.789 0.673 0.804
Ours w/o IOR 4.485 ± 1.353 0.177 ± 0.047 0.074 ± 0.034 5.327 ± 1.261 0.945 0.697 0.909 0.816 0.738 0.821
Ours 4.069 ± 1.089 0.122 ± 0.029 0.036 ± 0.018 5.043 ± 1.052 0.942 0.748 0.940 0.825 0.750 0.841

Individual-Level Scanpath Prediction for Training Viewers
Ours w/o RL 4.362 ± 1.294 0.137 ± 0.039 0.046 ± 0.027 5.517 ± 1.200 0.945 0.722 0.932 0.815 0.719 0.827
Ours 4.164 ± 1.039 0.120 ± 0.027 0.035 ± 0.016 5.166 ± 0.998 0.937 0.755 0.936 0.824 0.738 0.838

Table 3: Results from an ablation study examining RL’s impact on population-level and also individual-specific predictions
for training of viewers on the UEyes dataset (the results highlight the importance of DTWD and salient-value reward terms,
alongside the use of inhibition of return).

Input Design Population-Optimized Layout Personalized Layout (Viewer 1) Personalized Layout (Viewer 2)

D
es
ig
n
1

Average Proportion: 18.43% Proportion: 38.29% Proportion: 21.00%

D
es
ig
n
2

Average Proportion: 39.29% Proportion: 58.00% Proportion: 41.57%

Figure 8: Given the input GUI design with the order of the three most important elements as identified by the designer, we
generate both the population-optimized layout and the personalized layout for each individual viewer. The figure shows the
average percentage of the total fixation duration for those elements over a seven-second viewing period for the population-
optimized layout across all test viewers and the corresponding proportion for each personalized layout shown, also with seven
seconds of viewing. Personalized layouts can attract more of the respective viewer’s attention to the target elements than the
population-optimized layout does.

for the designer-selected elements with the population-optimized
layout, devoting 1.29 seconds of the seven-second viewing period
to them, on average. Shown the corresponding personalized layout,
all viewers would follow the desired order, with an average total
duration of 1.86 seconds (44.19% more than with population-level
optimizing). Given “Design 2”, 46 viewers shown the population-
optimized layout would follow the fixation order desired, with an
average duration sum of 2.75 s. With the personalized layout for
Design 2, 61 viewers would do so, and the average total duration is
3.19 seconds, a sum 16% greater than that from the population-level
layout. The results attest that personalized layouts can draw more
of the viewer’s attention to the target elements than a population-
optimized layout does.

7 DISCUSSION AND FUTUREWORK
EyeFormer is able to cover both spatial and temporal characteristics
of scanpaths across various stimulus types and factor in individual-
specific viewing behaviors, which are vital for understanding visual
attention. It opens the door to automated personalization of visual
flows, which enables GUI software to respond better to each user’s
behaviors and expectations. Personalized prediction is critical for
practical developments. There is rather extensive variability in
scanpaths across individuals; in fact, averaged scanpath prediction
may not be very meaningful – after all, it might be unlikely to match
any actual user. From inputting example scanpaths of a single user,
we have demonstrated that personalized layouts can be generated
for that user. Greater accessibility, through GUIs optimized for
people with viewing difficulties, is one of many possible application
domains. Further research could also use subjective comparison
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studies to see whether users prefer GUIs personalized in accordance
with scanpath predictions over the original interface.

7.1 Understanding Viewers
Future work could use viewer clustering to enhance the inter-
pretability of extensive sets of scanpaths for designers. Clustering
enabled by applying, for example, 𝐾-means to the viewer embed-
dings in our model could help reveal how viewers of various kinds
interact with visual content, thereby aiding designers in cultivat-
ing aggregate-level insight beyond individual paths, for a broader
perspective. Further research could also yield better tools for visu-
alizing and comprehending diverse viewer behaviors.

7.2 Practical Applications of Personalization
By controlling the visual flow over GUIs, designers can encour-
age users to focus on the most important parts of the interface.
This improves usability and aids in reaching specific design goals,
such as effective market funneling. Personalized visual flows can
support optimal ad placement and related design such that key
messages catch the attention of users and drive them toward such
desired actions as clicking or buying. Prior work on visual-saliency
analysis has highlighted that better visual flow can enhance users’
engagement and guide behaviors [14, 58, 66].

The ability to predict individuals’ gaze patterns could also sup-
port creating adaptive GUIs that respond dynamically to user inter-
actions and preferences. Moreover, associated research addressing
the correlation between design trends and user-interaction behav-
iors could prove fruitful; for instance, being able to fine-tune scan-
path prediction in light of current user data could address the fact
that individuals’ interactions with GUIs evolve over time.

The potential advantages extend beyond GUIs. Education tools
could benefit from adjusting visual content in line with the gaze
patterns of each user, thus facilitating students’ improved compre-
hension of complex concepts. Similarly, training modules that adapt
to users’ learning progress “on the fly” and focus on areas ripe for
improvement might promote more efficient learning. Also, predict-
ing users’ likely points of focus in augmented- and virtual-reality
settings could encourage more immersive experiences through dy-
namic adjustment of visual content that helps users locate objects
easily.

7.3 Ethics Concerns
A practical and ethics-related challenge remains, however, in how
to collect eye-tracking data from individuals. We foresee two main
options: 1) usingWeb cameras or other commodity devices, with the
user’s permission, and 2) inferring patterns via proxy signals such
as mouse movements. Since people with privacy concerns may be
reluctant to share their gaze data, the applications developed – such
as GUI layouts personalized on the basis of the user’s scanpaths
– should be able to run locally; in the ideal case, sensitive gaze
information should not be transmitted over the Internet. Another
possibility is to compute “sufficient statistic” measurements1 and
send these to a server that generates personalized GUI layouts.
These approaches would help maintain user privacy while still
offering the benefits of personalized scanpaths.
1See https://en.wikipedia.org/wiki/Sufficient_statistic.

7.4 Limitations
At present, the model is limited to fixed-length scanpaths, since we
considered a limited time window of free-viewing behaviors (based
on the seven-second maximum span in the UEyes dataset [24],
which permitted better comparison with earlier work). However,
it should be possible to output variable-length scanpaths by pre-
dicting the final state. In addition, our discussion concentrated
on predicting fixation sequences. We acknowledge that viewing
behaviors are far more complex, encompassing many other eye
dynamics (blinks, vestibulo-ocular reflexes, post-saccadic oscilla-
tions, etc.), which future studies could explore. Follow-up research
could also investigate ways of reducing the number of scanpaths
needed per viewer (from the current 50). Finally, the state-of-the-art
scanpath-related metrics are designed primarily for natural scenes,
so theymay not fully capture the characteristics of scanpaths in GUI
settings. Refining the metrics employed should afford deeper un-
derstanding of how models such as ours perform and thus enhance
the development of more effective methods.

8 OUR CONCLUSION
EyeFormer is a Transformer-guided RL model, which predicts
both population-level and individuals’ scanpaths well, using the
Transformer architecture as the policy model offers a novel repre-
sentation for accurately capturing variability in scanning patterns
across stimuli and individuals. While the Transformer-guided de-
sign effectively captures long-range sequential dependencies on
the basis of previous fixations, combining it with RL enhances the
generation of fixation sequences through optimization that em-
ploys non-differentiable objectives, such as maximizing the salient
values of fixations. In addition to performing better than (or at least
on par with) state-of-the-art models in the realm of population-
level prediction, EyeFormer offers the first accurate modeling of
individual-to-individual variability in scanpaths, from only a few
user samples. Its application for GUIs optimized in keeping with
the personalized scanpath-prediction results marks another contri-
bution offering a way forward.
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