
DreamStruct: Understanding Slides and User
Interfaces via Synthetic Data Generation

Yi-Hao Peng1 , Faria Huq1 , Yue Jiang3 , Jason Wu1 , Xin Yue Li1 ,
Jeffrey P. Bigham1 , and Amy Pavel2

1 Carnegie Mellon University, Pittsburgh PA 15213, USA
2 University of Texas Austin, Austin, TX, 78712, USA
3 Aalto University, Otakaari 24, 02150 Espoo, Finland

{yihaop,fhuq,jasonwu2,xal,jbigham}@cs.cmu.edu, yue.jiang@aalto.fi,
apavel@cs.utexas.edu

Abstract. Enabling machines to understand structured visuals like slides
and user interfaces is essential for making them accessible to people with
disabilities. However, achieving such understanding computationally has
required manual data collection and annotation, which is time-consuming
and labor-intensive. To overcome this challenge, we present a method to
generate synthetic, structured visuals with target labels using code gen-
eration. Our method allows people to create datasets with built-in labels
and train models with a small number of human-annotated examples. We
demonstrate performance improvements in three tasks for understand-
ing slides and UIs: recognizing visual elements, describing visual content,
and classifying visual content types.

Keywords: Synthetic Data · Transfer Learning · Visual Design

1 Introduction

Computationally understanding the underlying structures of visual designs, such
as presentation slides and user interfaces (UIs), enables machines to interpret and
describe the visuals for people who are blind [44, 51, 71, 83], retarget layouts to
new devices [37, 38] and personalize content based on user ability [20, 55, 76].
However, building the underlying machine learning models that enable these
capabilities requires labor-intensive data collection and annotation, which must
be performed for each type of input.

We present a method to generate synthetic, structured visuals by generat-
ing and rendering code (Figure 1). Our approach involves three phases: first,
we create design ideas with a large language model (LLM) based on the design
principles and targeted tasks; second, we generate labeled HTML code based on
these design ideas to represent structured visuals; third, we filter, post-process,
and render the code to produce finalized annotated datasets. While our method
is applicable to various types of structured visuals, we apply our method to two
application domains that lack high-quality, public datasets for computational
modeling: presentation slides and UI screenshots. For each application domain,

https://orcid.org/0000-0002-6335-5904
https://orcid.org/0000-0002-1359-9257
https://orcid.org/0000-0003-0022-6512
https://orcid.org/0000-0001-5101-0557
https://orcid.org/2222-3333-4444-5555
https://orcid.org/0000-0002-2072-0625
https://orcid.org/0000-0002-3908-4366

2 Peng et al.

we address three visual understanding tasks: i) element recognition, ii) image
captioning, and iii) image classification. Compared to traditional data collection
and annotation methods, our approach creates synthetically-annotated training
data on demand, which is more scalable and can be generalized or fine-tuned for
real-world use cases. Compared to automated approaches such as crawling and
metadata extraction [77,80], our approach is applicable to more visual domains
(e.g., presentation slides) and can produce more types of annotations (e.g., se-
mantic descriptions, visual classification).

Using our method, we generate two synthetic datasets: one with 10, 053 la-
beled slides (DreamSlides) and another with 9, 774 labeled user interfaces (Drea-
mUI). We evaluated our method by training machine learning models on our syn-
thetic datasets and comparing the performance with two types of baseline mod-
els: models fine-tuned with existing human-annotated data, and non-finetuned
models with notable zero-shot performance (e.g., LLaVA [47], Qwen-VL [7]). Our
results showed that for element recognition, models trained with synthetic data
demonstrated better performance compared to those trained only on human-
annotated data (achieved 10.95% improvement by training on synthetic slides,
and 5.20% improvement by pretraining on synthetic UIs). For image captioning,
our synthetic-data-finetuned models achieved better average win rates against
baseline models of 68.9% for slides and 67.1% for UIs. For image classifica-
tion, our synthetic data-trained models surpassed their counterparts trained on
human-annotated datasets by 18.4% for slide images and 11.3% for UI images.
Our results demonstrate the potential of learning structured visual representa-
tion using synthesized code.

2 Related Work

We review literature in three related areas: i) understanding slides, ii) under-
standing UIs, and iii) synthetic data generation for representation learning.

2.1 Understanding Slides

Previous research developed human-annotated datasets and models for inter-
preting visual and textual content in presentation slides, enabling flexible pre-
sentation consumption and authoring experiences [37,52–54,56]. The SpaSe [25]
and WiSe [26] datasets were the two early works that provide manually cu-
rated object segmentation masks for 2K slides from a large-scale online pre-
sentation platform [5]. Further advancements in slide modeling have involved
annotating bounding boxes for elements on more than 50K slides, facilitating
applications such as visual question answering [66] and sketch-based slide re-
trieval [35]. In addition to static slide documents, the Lecture Presentation Mul-
timodal Dataset [40] includes annotations for approximately 8.6K graphic ele-
ments across 9K slide frames derived from lecture videos. The FitVid dataset [37]
extends the data annotations by labeling both individual-level and semantic-
group-level elements (e.g., headers, footers, bullet text boxes), totaling 26K ele-
ment annotations across 5.5K slides. Unlike earlier methods that relied on human

DreamStruct: Understanding Slides and UIs via Synthetic Data Generation 3

annotators, our approach generates synthetic slides with relevant metadata on
demand, minimizing the need for manual annotations.

2.2 Understanding UIs

The introduction of large-scale UI datasets by prior works [9, 16,39,85] enabled
the development of data-driven approaches for computational UI modeling – in-
cluding UI element recognition and semantic grouping [12–14,50,81,85], assess-
ments of interactivity of UI elements [59, 63, 77], and evaluating agentic work-
flows for UIs [17, 34, 86]. However, collecting such large-scale datasets is often
time-consuming and labor-intensive. Unlike these methods that rely on manual
collection and human annotation for real UI data, our method uses synthesized
UIs as training data, allowing people to construct datasets flexibly while reducing
time and manual effort. We assess our method by assessing the models trained
with our synthetic data on a couple of existing UI datasets, including the dataset
for semantic element and grouping recognition [10], screen captioning [73], and
screen design pattern classification [43].

2.3 Synthetic Data Generation for Representation Learning

The concept of using synthetic data to learn real-world distributions has been
applied across various domains including robotics (sim-to-real) [6, 15, 58] and
healthcare [36, 67]. With the advent of generative models, recent research has
increasingly used generative models to create synthetic data for visual and lan-
guage representation learning [8, 19, 32, 33, 68, 72, 74]. One particularly relevant
work is WebSight [29], which presents a synthetic dataset of approximately 820K
HTML code examples generated from screen descriptions. Similar methods have
been employed to generate synthetic data for other modalities, such as vector
graphics [57, 60], charts [24, 69], animation [70], and 3D models [18, 82]. While
these papers generate code to synthesize visuals, their objectives are fundamen-
tally different from ours. They focus on translating between pixels and code
abstractions (pix2code and code2pix) without explicitly generating task-specific
underlying structures, which limits their applicability in understanding struc-
tured visuals (slides and UIs). In contrast, our method generates task-specific
metadata alongside code, providing a fine-grained training source for structured
visual representation learning.

3 Methods

Instead of relying on traditional methods for building visual understanding
datasets, which require human annotation of inputs (e.g., screenshots), Dream-
Struct begins with an abstract specification of the desired annotations and con-
straints, then generates the corresponding visual inputs as renderable code. In
this section, we describe our methodology for creating synthetically labeled slides
and UIs. We first explain our generation principles, followed by the generation
pipeline and the analysis of our synthetic datasets.

4 Peng et al.

Phase 1: Ideation

Here is an example description.
Generate 10 descriptions of
different screens, and make sure
all of them have different topics,
contents, layouts, and styles
compared to the given example.

Phase 2: Generation

Generate a static UI code with a single
HTML file that embedded CSS styles by
going through the following guidelines:

Phase 3: Production

Generate an image with clean background
for the given instruction:

Filter and
extract image
descriptions

DALL·E 3
&

Bing Search
APIGPT-4

The UI screen presents a "Recipe Finder" app, featuring a
top search bar, filter toggles for "Vegetarian", "Under 30
Minutes", and "Low-Calorie", and displays two recipes:
"Creamy Pasta" (Easy, 6 ingredients) and "Garden Salad"
(Medium, 5 ingredients), each accompanied by an image.
The bottom of the screen includes a copyright notice for
2023.

Seed
Concept (Cs)

Generation
Principles (P)

Generation
Principles +
(P)

GPT-4

<html lang="en">
<head>
<meta content="list" name="screentype"><style> ….
<style>
</head>
<body>
<div class="container">
<header>Recipe Finder</header>
<div class="search-bar">
<input type="text" placeholder="Search recipes...">

……
</body>
</html>

+

Fig. 1: Overview of the DreamStruct pipeline. From left to right: In the Ideation
Phase, screen descriptions for slides and mobile UIs are generated. In the Generation
Phase, corresponding code is produced based on these descriptions, guided by the design
principles and targeted labels. Finally, in the Production Phase, visual placeholders are
replaced with actual data to render the final slides and UIs.

3.1 Generation Principles

To ensure the generated structured visuals can help model the data in-the-wild,
we defined design principles and goals for our generation process. Establishing
a set of rules helps us formulate better prompt instruction [65] that embodies
the desired outcomes. We specifically propose the following principles (P):

P1. Consistency with existing visual design guidelines: The generated
design and layout should abide by the established design guidelines followed
by practitioners. For example, UI buttons should be of dimension ≥ 44× 44
pt [4], and the font size of the main text content on the slides should be
bigger than 24 pt [48].

P2. Consistency with existing visual design patterns: The generated vi-
sual design should reflect common design patterns (extite.g., visual design
themes or layouts). For example, the login and setting screens are common
classes for mobile UI design [43, 61], and the title slides and section slides
are common patterns for presentation design [23,27,62].

P3. Consistency with target data labels: The generated metadata should
align and remain consistent with all specified data labels for slides and UI
benchmarks. The principle applies to both element-wise [9, 37] and screen-
wise semantics [25, 37, 43]. For instance, an interactive swipe feature in UIs
should be categorized as ‘pageindicator’.

3.2 Generation Pipeline

Our generation pipeline consists of three steps (Figure 1): (1) Ideation: Create
design concepts for slides and UI. (2) Generation: Generate code with target
labels using design concept descriptions. (3) Production: Filter, post-process,
and render the code to produce the complete slides and UIs.

DreamStruct: Understanding Slides and UIs via Synthetic Data Generation 5

<!DOCTYPE html>
<html lang="en">
<head>
<style>
[...]
</style>
</head>
<body>
[...]
</body>
<script>
[...]
</script>
</html>

���
��������������

����
��������������������

��
�������������

���������������
	���� ���������������

���� ��
<div class="container">
<div class="header">Common Verb Conjugations</div>
<div class="chart-container">
<canvas data-type="chart" id="bar-chart"></canvas>
</div>
<div class="table-container">
<table data-type="table" class="table">
<thead>
<tr>
<th>Plain Form</th>
<th>-Masu Form</th>
<th>Polite Past Form</th>
</tr> [...]

����

.footer {
 position: absolute;
 bottom: 0;
 width: 100%;
 padding: 16px;
 background-color: #9FB3C8;
 text-align: center; [...]

.header {
 font-size: 32px;
 color: #334E68;
 padding: 16px;
 text-align: center;
 }

.table {
 width: 100%;
 border-collapse: collapse;
 }
 .table th, .table td {
 border: 1px solid #D9E2EC;
 padding: 8px;
 text-align: left;
 }
 .explanation {
 padding: 16px;
 font-size: 18px;
 line-height: 1.3; [...]

var ctx = document.getElementById('bar-chart').getContext('2d');
 var myChart = new Chart(ctx, {
 type: 'bar',
 data: {
 labels: ['Taberu', 'Kiku', 'Miru', 'Iku', 'Kuru', 'Suru'],
 datasets: [{
 label: 'Frequency of Use',
 data: [12, 19, 3, 5, 2, 3],
 backgroundColor: [
 [...]
],
 borderColor: [
 'rgba(255, 99, 132, 1); [...]

This slide displays the subject of mastering
Japanese verb conjugations, titled "Common Verb
Conjugations" at the top. It features a bar graph
quantifying the use of di�erent verbs such as
'Taberu', 'Kiku', and others, in varied colors. Directly
below, a descriptive table elucidates the
transformation of verbs from the plain form to the
more formal -masu and past tense forms, with
'Taberu' transitioning to 'Tabemasu' and
'Tabemashita'. The slide concludes with a footer of
the copyright notice at the bottom.

���������������
����

Fig. 2: An example of a generated slide description with the corresponding generated
code and generated slide (top) with example CSS, HTML, and JavaScript excerpts
from the generated code (bottom).

Phase 1: Ideation. We generate a corpus of design concepts (Cd) for slides
and UIs by prompting an LLM with our generation principles (P) and a set of
seed design concept examples (Cs). To obtain our seed design concept examples
(Cs), we examine real-world instances of slides and UIs [37, 40, 43]. From the
examination, we select 20 diverse samples for both slides and UIs. We then
manually write descriptions for all the samples based on prior visual description
guidelines [22, 56]. Each human description provides a summary of the visual
content, style, and layout (i.e. a design concept). For example, The slide titled
"By the Numbers" presents three key statistics on disability representation, each
in a separate column with a corresponding icon. The statistics cover general
disability prevalence, volunteer participation, and board representation. A source
reference is provided at the bottom. The slide uses a dark grey color scheme. We
then prompt an LLM with P (our design guidelines, design patterns, and target
labels) as our instructions and Cs as our few-shot examples to ensure that the
generated corpus of design concepts Cd are consistent with P [49] and the style
of human-written descriptions. In other words, ∀cd ∈ Cd, cd ∼ Gt=0.5(Cs, P),
where G denotes the LLM (gpt-4-1106-preview in this case) and t denotes the
temperature parameter used in G during decoding. In this manner, we achieve a
high-quality and diverse corpus Cd with negligible duplicates where only 0.94%
descriptions have pairwise BERTscore [84] > 0.7, a threshold that was used to
determine the diversity of generated descriptions [72].

Phase 2: Generation. We approach visual layout creation for slides and
UIs as a code generation task. We use HTML for layout creation because of
its semantic structure, which allows label embedding during generation. Un-
like text-to-image models that generate visual data directly from descriptions,
our code-based method offers flexible visual generation and detailed annota-

6 Peng et al.

The UI screen presents a "Recipe
Finder" app, featuring a top
search bar, �lter toggles for
"Vegetarian", "Under 30 Minutes",
and "Low-Calorie", and displays
two recipes: "Creamy Pasta" (Easy,
6 ingredients) and "Garden Salad"
(Medium, 5 ingredients), each
accompanied by an image. The
bottom of the screen includes a
copyright notice for 2023.

��������������������� ��������������������� ������������
[...]
<div class="recipe-card">

 <div class="recipe-info">
 <div class="recipe-title">Creamy Pasta</div>
 <div class="recipe-details">Di�culty: Easy | Ingredients: 6</div>
 </div>
 </div>
 <div class="recipe-card">

 <div class="recipe-info">
 <div class="recipe-title">Garden Salad</div>
 <div class="recipe-details">Di�culty: Medium | Ingredients: 5</div>
 </div>
[...]

�����������
Creamy pasta dish

Fresh salad bowl

https://www.allrecipes.com/thm-
b/[...]/Creamy-Garlic-pasta-d2b6747
7d7ac49f9ad084bde7cdd3349.jpg

https://le-cdn.hibuwebsites.com [...]
img7-1920w.jpg

Fig. 3: An example of a generated UI description with the corresponding generated
code and generated UI. In the Production phase, our pipeline extracts alternative text
and placeholder image link and uses Bing Search API or DALL·E to get a link or image
to replace the placeholder.

tions. To ensure the generated code for ∀cd ∈ Cd has the desired annota-
tion formats and adheres to design guidelines, we incorporate the principles,
P = {P1, P2, P3} in the input instructions (see supplementary materials for the
complete prompts). Specifically, we instruct the LLM to add additional semantic
HTML attributes as the targeted annotations. For instance, in the element recog-
nition task, individual element types are labeled with data-type attributes (e.g.,
this is a text element). For image clas-
sification, we label the screen type as attributes of global <meta> tags (e.g., <meta
content="login" name="screentype">). For graphical elements that can be
produced via image retrieval or generation (e.g., images, icons, and diagrams for
our selected domains), we ask the model to generate an image element with a
text description of the intended image content as alternative text (<alt="Fresh
salad bowl">), a placeholder image source (), and
width and height values. For more complex graphical elements that are chal-
lenging to create with image retrieval or text-to-image models, we instruct the
LLM to use external code libraries to create the visuals (e.g., charts in our se-
lected domains and tasks, we selectively use chart.js [3], chartist.js [2], and
chart.css [1] as our generation libraries). At this step, we have an updated cor-
pus of pairwise descriptions and annotated code that both follow our principles,
Cdh = {Gt=0.3(cd;P), ∀cd ∈ Cd}.

Phase 3: Production. The final step involves post-processing, filtering, and
rendering the generated code for slides and UIs. We use the <alt> value of each
graphical element placeholder as the basis for visual updates. For simple graph-
ical elements (e.g., images and icons in our selected domain), we query the Bing
Search API to retrieve image sources with transparent background. For complex
graphical elements (e.g., diagrams in our selected domain), we prompt text-to-
image model DALL·E to generate image sources. We then download each image
and replace the placeholder source with a link to the new image source. Besides
graphical elements rendering, we take additional heuristic-based post-processing
steps to improve the quality of generation: 1) removing background fill colors

DreamStruct: Understanding Slides and UIs via Synthetic Data Generation 7

when a background image is present, 2) adding width and height for el-
ements (e.g., replacing with
) for proper fitting, and 3) keeping
sliding menus open on page load to ensure visibility. To reduce the low-quality
samples caused by major element occlusion or invalid references, we
compute the CLIP score between the rendered screens and their design con-
cepts, and we filter out examples with a CLIP score below 0.3. We choose the
threshold based on the average image-text alignment for LLM-based text-to-
code generation [79]. In total, we filtered out 215 (2.1%) slide and 336 (3.36%)
UI samples. The final HTML is rendered within viewports of 1280 × 720 for
slides and 628 × 1118 pixels for UIs. Our updated corpus can be represented
as Cdhm = cd, ch,R(F(ch)) : ∀cd, ch ∈ Cdh, where R and F are the rendering
and filtering functions.

Slides UIs

of Descriptions 10,268 10,000
of Generated Code (after filtering) 10,053 9,774
of Generated Images and Icons 15,593 30,518
of Generated Charts 2128 -
of Avg. Element 6.46 11.08

Table 1: Statistics of DreamStruct dataset.

3.3 Synthetic Dataset

Table 1 presents the statistics for the data generated in DreamStruct1. We cre-
ated a total of 10,053 slide-code pairs (DreamSlides) and 9,774 UI-code pairs
(DreamUI). We quantitatively compare DreamStruct with human-annotated
datasets in terms of descriptions and element compositions. DreamStruct pro-
vides significantly more detailed descriptions for slides and UIs, averaging 57.23
words and 19.66 named entities per description, compared to 5.74 words and
3.37 named entities in human-annotated datasets. The differences in element
compositions are marginal, including the number of images per sample (Dream-
Struct=2.32, human=2.48), charts per sample (DreamStruct=0.21, human=0.07),
diagrams per sample (DreamStruct=0.24, human=0.12), and total elements per
samples (DreamStruct=8.74, human=8.83). Figure 4 illustrates the distribution
of elements in our synthetic slide and UI datasets compared to ground-truth
datasets. Even without explicitly controlling the distribution of element classes
during generation, the element distribution in our synthetic data aligns with
real-world datasets [9, 37]. An exception is the ‘upper task bar’ in our synthetic
UI dataset, which displays the time and internet signals and is not typically part
of the UI content. Consequently, the upper task bar appears infrequently in our
dataset, as shown in Figure 4b.
1 https://github.com/yihaop/dreamstruct

https://github.com/yihaop/dreamstruct

8 Peng et al.

(a) Normalized Log Distribution of Slide Ele-
ment Types in DreamStruct and FitVid

(b) Normalized Log Distribution of UI Element
Types in DreamStruct and VINS

Fig. 4: Normalized Log Distribution of Slide and UI Elements

4 Experiments

We evaluate our synthetic method by training and pretraining models on our
generated datasets for slides and UIs and comparing to strong baselines consist-
ing of models trained on human-annotated data and publicly-available models.
The chosen models are designed to perform element recognition, image caption-
ing, and image classification on screenshots, which are essential tasks for the
computational understanding of slides and UIs.

4.1 Element Recognition

Element recognition identifies and outlines elements in slides and UIs from pixel
input. The recognition results can be applied to domains such as accessibility [85],
design [9], and device retargeting [37]. For our base object recognition models,
we selected several vision backbones, including CenterNet2 [87], Deformable-
DETR [88], and EfficientDet-D0 [64].

Slide Element Recognition. For slide element recognition, we used a lecture
design dataset [37] as our benchmark, with a split of 70%, 15%, and 15% for
training, validation, and testing respectively. We ensured that slides from the
same presentation videos were grouped in the same split. The separation is to
prevent the models from training and testing on similar data as slide frames from
the same video are typically similar to each other. The dataset consists of 5.5K
slides and includes 12 types of semantic elements, across 14 domains (ranging
from engineering to social science). We merge classes that are semantically close
to each other (e.g., ‘figures’ and ‘pictures’ into ‘images’, ‘handwritten’ into ‘text
box’), resulting in 10 types of element types: ‘title’, ‘text box’, ‘image’, ‘chart’,
‘diagram’, ‘table’, ‘schematic diagram’, ‘header’, ‘footer’, and ‘instructor’. The
dataset provides bounding boxes for both individual elements (titles, text boxes,
images, charts, diagrams, tables, schematic diagrams, instructors) and container-
type elements (headers and footers), and introduces unique labels such as “in-
structor" that are not commonly found in other related datasets [25,26,35,40].

DreamStruct: Understanding Slides and UIs via Synthetic Data Generation 9

Fig. 5: Performance of slide element recognition when adding training samples

Our findings show that models trained on synthetic slides achieved higher
mean Average Precision (mAP) than those trained on human-annotated data.
Specifically, models trained on synthetic data achieved an average of 55.3% mAP
compared to 44.3% mAP for models trained on an equivalent sample size of
human-annotated data (full training set). The limited performance of models
trained on human-annotated data was due to a lack of visual design variation,
as many training samples were derived from the same video. In contrast, our syn-
thetic data generation method ensures a diverse dataset, resulting in a more gen-
eralized data distribution. Figure 5 shows the performance curve as we gradually
added more synthetic training samples. Performance gains plateaued and peaked
at an average of 64.4% mAP when training model with a synthetic dataset twice
the size of the original human-annotated set. Our performance analysis of indi-
vidual element types revealed that our models excelled in recognizing tables and
charts due to the diverse data generated through code variations coupled with
image retrieval and generation.

UI Element Recognition. For UI element recognition, we select the mobile
UI design dataset [10] as our benchmark, with the train, val, and test splits of
70%, 15%, 15% derived from prior work [80]. The dataset contains 5K mobile
UI screens along with 12 classes of elements (e.g., ‘text’, ‘image’, ‘text button’,
‘icon’, ‘input field’, ‘switch’, ‘checked view’, ‘background image’, ‘sliding menu’,
‘upper taskbar’, ‘page indicator’, ‘popup window’) across the screenshots of iOS
and Android applications as well as UI mockups. The dataset provides bounding
boxes for both individual elements (text, images, text buttons, icons, switches,
checked views, background images, page indicators) and container-type elements
(input fields, upper task bars, sliding menus, popup windows).

To address the element distribution gap between the synthetic and the real-
world data, we adopted a two-stage training approach. Initially, we used our
synthetic dataset to pretrain the models, which allowed us to establish a foun-
dational set of weights. This pretraining step is crucial as it initializes the model’s

10 Peng et al.

Fig. 6: Performance of UI element recognition when adding training samples

weights with knowledge gained from the synthetic UI data, despite its distribu-
tional differences from real-world data. After pretraining, we then finetuned the
models on human-annotated data. This finetuning phase adjusts the pretrained
weights to align more closely with the real-world data distribution, thereby en-
hancing the model’s performance on tasks that reflect real-world scenarios. Our
findings show that using synthetic UIs for pretraining, followed by finetuning
with only 50 samples of human-annotated data, resulted in an average mAP
improvement of 5.2% compared to training solely with the same set of human-
annotated samples (from an average mAP of 47.2% to 52.4%). As we gradually
added human-annotated samples, the pretraining step continued to show bene-
fits, with an average mAP improvement from 78.8% to 81.8% when finetuning
on the full human-annotated training set (Figure 6).

4.2 Image Captioning

Image captioning refers to the task of generating descriptions for the screen-
shots of slides and UIs. The descriptions can support blind and low-vision indi-
viduals in accessing information from visually structured images [41,56,73]. We
evaluate the quality of descriptions generated from four vision-language model
(VLM) variations: our model that fine-tunes LLaVA-1.5-13B using the synthetic
datasets; the original LLaVA model without fine-tuning; the vision language
models including LLaVA or Pix2Struct fine-tuned with existing human-written
captions [35,73]; and GPT-4V (zero-shot). We conducted manual pairwise com-
parisons with 6 human annotators. Specifically, we first asked the annotators
to label the same 50 slides and UI samples and we ensured the consistency of
the preference ratings across human annotators based on the prior works on
image captioning ratings [21, 22]. We then let each human rater rate 2K com-
parisons randomly sampled from two unique model outputs, resulting total of
10,392 comparisons and preference selections.

DreamStruct: Understanding Slides and UIs via Synthetic Data Generation 11

(a) Win rate matrix of slides (b) Win rate matrix of UIs

Fig. 7: The matrices showing each pair-wise win rate comparison across models

Slides Image Captioning. For slide description, We randomly sampled 732
slides from existing lecture presentation slide datasets [37, 40] as our test set.
Figure 7a presents the pairwise win rates between our methods and baseline
conditions including LLaVA zero-shot, LLaVA fine-tuned with existing slide de-
scriptions [35], and GPT-4V. The model fine-tuned with our synthetic image-
description pairs surpasses those fine-tuned with current description datasets
(77.9% win rate) and those derived from zero-shot inference (97.3% win rates).
Our model, though smaller, still achieves a 31.6% win rate compared to GPT-4V.

UI Image Captioning. For UI description, We randomly sampled 1000 UIs
from existing UI datasets [10] as our test set. Figure 7b presents the pair-
wise comparison results between our methods and baseline conditions (including
LLaVA zero-shot, the vision-language model Pix2Struct [42] finetuned on ex-
isting screen2word dataset [73], and GPT-4V). The model fine-tuned with our
synthetic image-description pairs surpasses those fine-tuned with existing de-
scription datasets (64.8% win rate) and those generated from zero-shot inference
(99.2% win rate). Compared to GPT-4V, our model achieves 37.3% of the win
rate despite our base model size being smaller than GPT4-V.

4.3 Image Classification

Image classification involves identifying the themes and designs of individual
slides and UIs across subjects or visual patterns. By categorizing the themes,
the machine can perform tasks like detecting lecture topics or chapters [11,
46, 53], and offering UI design recommendations [10, 43]. We chose two VLMs,
LLaVA-1.5-13B [47] and Qwen-VL-Chat-7B [7], as our base classification mod-
els. We compared the classification performance across multiple conditions: our
models that finetuned based models using synthetic datasets; the original base
models (zero-shot); the based models finetuned with existing human-annotated

12 Peng et al.

data; and two off-the-shelf VLMs: GPT-4V and Gemini-1.0-Pro. For the human-
annotated dataset, we maintained an 80% training and 20% testing split for
benchmarking. Notably, the current image classification datasets for either UIs
or slides only comprise around 1,000 samples or fewer.

Model Slides UIs

GPT-4V 0.772 0.598
Gemini-1.0-Pro-Vision 0.700 0.533
LLaVA synth (ours) 0.686 0.545
Qwen-VL synth (ours) 0.672 0.558
LLaVA zero-shot 0.462 0.395
Qwen-VL zero-shot 0.473 0.382
LLaVA human-annotated 0.335 0.316
Qwen-VL human-annotated 0.341 0.303

Table 2: The classification accuracy of each model for both slides and UIs (training
samples: synth=̃5K; human-annotated=̃0.5K)

Slide Classification. For slide classification, we selected the top 10 topics
from previous datasets [37, 40] and combined similar themes, resulting in six
topics: psychology, communication, law, public health, computer science, and
language learning. We initially sampled 960 slides, excluding irrelevant ones such
as ‘Thank You’ slides, which led to a dataset of 732 slides as our ground truth
set. From this human-annotated set, we randomly chose 25 slides per topic,
creating a test sample of 150 slides. Table 2 displays the slide classification ac-
curacy. Models trained on our synthetic slides achieved an average classification
accuracy of 52.2%, surpassing the original base model (46.8%) and the base
models fine-tuned with human-annotated data (33.8%). By expanding the train-
ing dataset to 5,033 synthetic slides, our method reached an average accuracy
of 67.9%. However, further increases in sample size resulted in diminishing re-
turns (Figure 8a). Despite this improvement, the optimal performance with the
current synthetic sample sizes still lags behind GPT-4V by 9.3%.

UI Classification. For UI classification, we chose the top-10 design topics
from the previous mobile UI design dataset [43]. We merging the class ‘News’ to
‘Gallery’ due to its lack of visual correlation with the class name. This yielded
categories including ‘List’, ‘Login’, ‘Settings’, ‘Menu’, ‘Media Player’, ‘Form’,
‘Profile’, ‘Tutorial’ and ‘Gallery’, resulting in a dataset of 1020 unique UIs. For
evaluation, we randomly selected 25 UIs per category from the dataset, forming a
test set of 225 UIs. With a similar number of training samples, our synthetically-
trained models demonstrated a 42.3% classification accuracy, outperforming the
original base models (38.9%) and base models fine-tuned with human-annotated

DreamStruct: Understanding Slides and UIs via Synthetic Data Generation 13

(a) Performance of Slide Classification (b) Performance of UI Classification

Fig. 8: Performance of Slide and UI Image Classification when scaling up synthetic
training samples

data (31.0%). With around a ten-fold increase in training samples to 5358 syn-
thetic UIs, the accuracy rose to 55.2%, although further gains plateaued with
additional training samples (Figure 8b). The current synthetic training sample
sizes result in performance that is 4.7% below that of GPT4-V.

For both slides and UI classification, fine-tuning with human-annotated sam-
ples led to performance drops compared to zero-shot inference. This is likely due
to the small and class-imbalanced dataset for structured visual classification, lim-
iting the fine-tuned classification performance, as shown in prior work [45,80].

4.4 Summary

The results of our experiments reveal several key findings. First, in domains
like slide understanding, where high-quality data is the primary limiting fac-
tor, DreamStruct achieves significant performance gains (+20% mAP). In cases
like UI understanding, which benefit from larger quantities of human-annotated
data, incorporating DreamStruct’s synthetic data still leads to substantial im-
provements in a fine-tuning setting (+5% mAP). Across all tasks and domains,
training DreamStruct’s synthetic data leads to performance gains and allows
open-source models (e.g., LLaVA, Qwen-VL) to approach the performance of
larger proprietary baselines (e.g., GPT, Gemini). Our results demonstrate the
potential of learning various granularity levels of visual representations through
generative code-oriented semantics.

5 Limitations

While our synthetic method leads to better performance on couple of down-
stream tasks for slides and UI understanding, there are still potential concerns
and limitations regarding the current data collection scheme and capacities.

14 Peng et al.

Quality of Code Generation. Although we specify guidelines for element
positioning and spacing (§3.2) during our generation, the generated layouts some-
times fail to follow the specific guidelines. Sometimes the generated code adds
the metadata into the wrong place. This results in CSS styling errors as well
as overflow and overlaps in the generated layouts. For example, the data-type
property was mentioned inside CSS tag 1,183 times across 354 screens, although
it is not a valid CSS property. While we could fix these minor errors by parsing
the HTML during post-processing (§3.2), future work should be mindful that such
errors can occur in synthetic data generation framework [65]. To improve the
code generation quality, future work can incorporate additional domain-specific
filtering models [78, 79] as reward functions to better improve the code-based
visual generation quality.

Limitation of Visual Content Generation. Currently, we use the image
alternative text to generate the visual content using Bing Image Search and
DALL·E (§3.2). Since we do not pass any additional contextual information for
the screen, the generated images may not be consistent in style throughout
the layout. Future work can extend the visual content generation process by
including additional context [28] and visual asset libraries.

Potential Negative Impact of the Work. While our work makes it easier
to improve understanding of structured visual content like slides and UIs, there
might be the potential risk of misusing the DreamStruct pipeline for false and
misleading content creation [75]. We do not endorse the use of DreamStruct to
create manipulative content. Future work can investigate the potential risk of
synthetic data generation and design a more robust generation pipeline that han-
dles copyright issues. Our work may be used for accessibility purposes (especially
for the accessible creativity domains [30, 31, 54, 56]). For example, blind people
may use element recognition to traverse a slide screenshot from a lecture video
using their screen reader [52] and may not be able to detect when our model
produces errors (e.g., misses an element). Future deployments should warn users
of potential errors when using such models, and future work should continue to
improve the accuracy of such models.

6 Conclusion

We present a method that uses code generation to create synthetic, structured
visuals with embedded target labels. Our approach offers an efficient alternative
to traditional, labor-intensive data collection and annotation methods for un-
derstanding presentation slides and user interfaces. By generating and utilizing
synthetic datasets, we have achieved notable improvements in machine learning
models’ performance across various tasks, including element recognition, im-
age captioning, and image classification. Our findings highlight the potential
of synthetic data to enhance computational models’ capabilities in interpreting
structured visuals and building the next generation of intelligent interfaces.

DreamStruct: Understanding Slides and UIs via Synthetic Data Generation 15

Acknowledgements

We thank the reviewers for their feedback and Yuyu Lin for her major support
in our study. This work is funded in part by the National Science Foundation.

References

1. chartcss. https://chartscss.org/, accessed: 2024-03-07 6
2. chartistjs. https://gionkunz.github.io/chartist-js/, accessed: 2024-03-07 6
3. chartjs. https://www.chartjs.org/, accessed: 2024-03-07 6
4. Human interface guidelines. https://developer.apple.com/design/human-

interface-guidelines/ (2024), accessed: 2024-03-07 4
5. Araujo, A., Chaves, J., Lakshman, H., Angst, R., Girod, B.: Large-scale query-by-

image video retrieval using bloom filters. arXiv preprint arXiv:1604.07939 (2016)
2

6. Azizi, S., Kornblith, S., Saharia, C., Norouzi, M., Fleet, D.J.: Synthetic data from
diffusion models improves imagenet classification. arXiv preprint arXiv:2304.08466
(2023) 3

7. Bai, J., Bai, S., Yang, S., Wang, S., Tan, S., Wang, P., Lin, J., Zhou, C., Zhou, J.:
Qwen-vl: A versatile vision-language model for understanding, localization, text
reading, and beyond (2023) 2, 11

8. Borisov, V., Seßler, K., Leemann, T., Pawelczyk, M., Kasneci, G.: Language models
are realistic tabular data generators. arXiv preprint arXiv:2210.06280 (2022) 3

9. Bunian, S., Li, K., Jemmali, C., Harteveld, C., Fu, Y., Seif El-Nasr, M.S.: Vins:
Visual search for mobile user interface design. In: Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems. CHI ’21, Association for
Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/
3411764.3445762, https://doi.org/10.1145/3411764.3445762 3, 4, 7, 8

10. Bunian, S., Li, K., Jemmali, C., Harteveld, C., Fu, Y., Seif El-Nasr, M.S.: Vins:
Visual search for mobile user interface design. In: Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems. pp. 1–14 (2021) 3, 9, 11

11. Che, X., Yang, H., Meinel, C.: Lecture video segmentation by automatically an-
alyzing the synchronized slides. In: Proceedings of the 21st ACM international
conference on Multimedia. pp. 345–348 (2013) 11

12. Chen, C., Su, T., Meng, G., Xing, Z., Liu, Y.: From ui design image to gui
skeleton: A neural machine translator to bootstrap mobile gui implementation.
In: Proceedings of the 40th International Conference on Software Engineering.
p. 665–676. ICSE ’18, Association for Computing Machinery, New York, NY,
USA (2018). https://doi.org/10.1145/3180155.3180240, https://doi.org/
10.1145/3180155.3180240 3

13. Chen, J., Xie, M., Xing, Z., Chen, C., Xu, X., Zhu, L., Li, G.: Object detec-
tion for graphical user interface: Old fashioned or deep learning or a combina-
tion? In: Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering. p. 1202–1214. ESEC/FSE 2020, Association for Computing Machin-
ery, New York, NY, USA (2020). https://doi.org/10.1145/3368089.3409691,
https://doi.org/10.1145/3368089.3409691 3

https://chartscss.org/
https://gionkunz.github.io/chartist-js/
https://www.chartjs.org/
https://developer.apple.com/design/human-interface-guidelines/
https://developer.apple.com/design/human-interface-guidelines/
https://doi.org/10.1145/3411764.3445762
https://doi.org/10.1145/3411764.3445762
https://doi.org/10.1145/3411764.3445762
https://doi.org/10.1145/3411764.3445762
https://doi.org/10.1145/3411764.3445762
https://doi.org/10.1145/3180155.3180240
https://doi.org/10.1145/3180155.3180240
https://doi.org/10.1145/3180155.3180240
https://doi.org/10.1145/3180155.3180240
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1145/3368089.3409691

16 Peng et al.

14. Chen, S., Fan, L., Su, T., Ma, L., Liu, Y., Xu, L.: Automated cross-platform gui
code generation for mobile apps. In: 2019 IEEE 1st International Workshop on
Artificial Intelligence for Mobile (AI4Mobile). pp. 13–16 (2019). https://doi.
org/10.1109/AI4Mobile.2019.8672718 3

15. Chen, Y., Li, W., Chen, X., Gool, L.V.: Learning semantic segmentation from
synthetic data: A geometrically guided input-output adaptation approach. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition.
pp. 1841–1850 (2019) 3

16. Deka, B., Huang, Z., Franzen, C., Hibschman, J., Afergan, D., Li, Y., Nichols,
J., Kumar, R.: Rico: A mobile app dataset for building data-driven design ap-
plications. In: Proceedings of the 30th annual ACM symposium on user interface
software and technology. pp. 845–854 (2017) 3

17. Deng, X., Gu, Y., Zheng, B., Chen, S., Stevens, S., Wang, B., Sun, H., Su, Y.:
Mind2web: Towards a generalist agent for the web. Advances in Neural Information
Processing Systems 36 (2024) 3

18. Feng, W., Zhu, W., Fu, T.j., Jampani, V., Akula, A., He, X., Basu, S., Wang, X.E.,
Wang, W.Y.: Layoutgpt: Compositional visual planning and generation with large
language models. Advances in Neural Information Processing Systems 36 (2024) 3

19. Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Dreamsim:
Learning new dimensions of human visual similarity using synthetic data (2023) 3

20. Gajos, K., Weld, D.S.: Supple: automatically generating user interfaces. In: Pro-
ceedings of the 9th international conference on Intelligent user interfaces. pp. 93–
100 (2004) 1

21. Gleason, C., Pavel, A., Gururaj, H., Kitani, K., Bigham, J.: Making gifs accessi-
ble. In: Proceedings of the 22nd International ACM SIGACCESS Conference on
Computers and Accessibility. pp. 1–10 (2020) 10

22. Gleason, C., Pavel, A., McCamey, E., Low, C., Carrington, P., Kitani, K.M.,
Bigham, J.P.: Twitter a11y: A browser extension to make twitter images acces-
sible. In: Proceedings of the 2020 chi conference on human factors in computing
systems. pp. 1–12 (2020) 5, 10

23. GmbH, P.: 10 types of powerpoint slides (2023), https://www.presentationload.
com/blog/10-types-of-powerpoint-slides/ 4

24. Han, Y., Zhang, C., Chen, X., Yang, X., Wang, Z., Yu, G., Fu, B., Zhang, H.:
Chartllama: A multimodal llm for chart understanding and generation (2023) 3

25. Haurilet, M., Al-Halah, Z., Stiefelhagen, R.: Spase-multi-label page segmentation
for presentation slides. In: 2019 IEEE Winter Conference on Applications of Com-
puter Vision (WACV). pp. 726–734. IEEE (2019) 2, 4, 8

26. Haurilet, M., Roitberg, A., Martinez, M., Stiefelhagen, R.: Wise—slide segmen-
tation in the wild. In: 2019 International Conference on Document Analysis and
Recognition (ICDAR). pp. 343–348. IEEE (2019) 2, 8

27. Hsu, H.Y., He, X., Peng, Y., Kong, H., Zhang, Q.: Posterlayout: A new benchmark
and approach for content-aware visual-textual presentation layout. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
6018–6026 (2023) 4

28. Hu, H., Chan, K.C., Su, Y.C., Chen, W., Li, Y., Sohn, K., Zhao, Y., Ben, X.,
Gong, B., Cohen, W., et al.: Instruct-imagen: Image generation with multi-modal
instruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 4754–4763 (2024) 14

29. HuggingFaceM4: Websight (v0.1). https : / / huggingface . co / datasets /
HuggingFaceM4/WebSight (2024), accessed: 2024-01-16 3

https://doi.org/10.1109/AI4Mobile.2019.8672718
https://doi.org/10.1109/AI4Mobile.2019.8672718
https://doi.org/10.1109/AI4Mobile.2019.8672718
https://doi.org/10.1109/AI4Mobile.2019.8672718
https://www.presentationload.com/blog/10-types-of-powerpoint-slides/
https://www.presentationload.com/blog/10-types-of-powerpoint-slides/
https://huggingface.co/datasets/HuggingFaceM4/WebSight
https://huggingface.co/datasets/HuggingFaceM4/WebSight

DreamStruct: Understanding Slides and UIs via Synthetic Data Generation 17

30. Huh, M., Peng, Y.H., Pavel, A.: Genassist: Making image generation accessible.
In: Proceedings of the 36th Annual ACM Symposium on User Interface Software
and Technology. pp. 1–17 (2023) 14

31. Huh, M., Yang, S., Peng, Y.H., Chen, X., Kim, Y.H., Pavel, A.: Avscript: Accessible
video editing with audio-visual scripts. In: Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems. pp. 1–17 (2023) 14

32. Jandaghi, P., Sheng, X., Bai, X., Pujara, J., Sidahmed, H.: Faithful persona-based
conversational dataset generation with large language models (2023) 3

33. Jeronymo, V., Bonifacio, L., Abonizio, H., Fadaee, M., Lotufo, R., Zavrel, J.,
Nogueira, R.: Inpars-v2: Large language models as efficient dataset generators for
information retrieval. arXiv preprint arXiv:2301.01820 (2023) 3

34. Jiang, Y., Schoop, E., Swearngin, A., Nichols, J.: Iluvui: Instruction-tuned
language-vision modeling of uis from machine conversations (2023) 3

35. Jobin, K., Mishra, A., Jawahar, C.: Semantic labels-aware transformer model for
searching over a large collection of lecture-slides. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. pp. 6016–6025 (2024) 2,
8, 10, 11

36. Khan, A.R., Khan, S., Harouni, M., Abbasi, R., Iqbal, S., Mehmood, Z.: Brain
tumor segmentation using k-means clustering and deep learning with synthetic
data augmentation for classification. Microscopy Research and Technique 84(7),
1389–1399 (2021) 3

37. Kim, J., Choi, Y., Kahng, M., Kim, J.: Fitvid: Responsive and flexible video content
adaptation. In: Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems. pp. 1–16 (2022) 1, 2, 4, 5, 7, 8, 11, 12

38. Krosnick, R., Lee, S.W., Laseck, W.S., Onev, S.: Expresso: Building responsive
interfaces with keyframes. In: 2018 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). pp. 39–47. IEEE (2018) 1

39. Kumar, R., Satyanarayan, A., Torres, C., Lim, M., Ahmad, S., Klemmer, S.R.,
Talton, J.O.: Webzeitgeist: design mining the web. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. pp. 3083–3092 (2013) 3

40. Lee, D.W., Ahuja, C., Liang, P.P., Natu, S., Morency, L.P.: Lecture presentations
multimodal dataset: Towards understanding multimodality in educational videos.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 20087–20098 (2023) 2, 5, 8, 11, 12

41. Lee, J., Peng, Y.H., Herskovitz, J., Guo, A.: Image explorer: Multi-layered touch
exploration to make images accessible. In: Proceedings of the 23rd International
ACM SIGACCESS Conference on Computers and Accessibility. pp. 1–4 (2021) 10

42. Lee, K., Joshi, M., Turc, I.R., Hu, H., Liu, F., Eisenschlos, J.M., Khandelwal, U.,
Shaw, P., Chang, M.W., Toutanova, K.: Pix2struct: Screenshot parsing as pretrain-
ing for visual language understanding. In: International Conference on Machine
Learning. pp. 18893–18912. PMLR (2023) 11

43. Leiva, L.A., Hota, A., Oulasvirta, A.: Enrico: A dataset for topic modeling of mobile
ui designs. In: 22nd International Conference on Human-Computer Interaction with
Mobile Devices and Services. pp. 1–4 (2020) 3, 4, 5, 11, 12

44. Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597 (2023) 1

45. Liang, P.P., Lyu, Y., Fan, X., Wu, Z., Cheng, Y., Wu, J., Chen, L., Wu, P., Lee,
M.A., Zhu, Y., et al.: Multibench: Multiscale benchmarks for multimodal represen-
tation learning. Advances in neural information processing systems 2021(DB1), 1
(2021) 13

18 Peng et al.

46. Lin, M., Chau, M., Cao, J., Nunamaker Jr, J.F.: Automated video segmentation for
lecture videos: A linguistics-based approach. International Journal of Technology
and Human Interaction (IJTHI) 1(2), 27–45 (2005) 11

47. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. In: NeurIPS (2023)
2, 11

48. Microsoft: The 10-20-30 rule of powerpoint (2023), https://www.microsoft.
com/en-us/microsoft-365-life-hacks/presentations/10-20-30-rule-of-
powerpoint 4

49. Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., Zettlemoyer,
L.: Rethinking the role of demonstrations: What makes in-context learning work?
arXiv preprint arXiv:2202.12837 (2022) 5

50. Moran, K., Bernal-Cárdenas, C., Curcio, M., Bonett, R., Poshyvanyk, D.: Ma-
chine learning-based prototyping of graphical user interfaces for mobile apps. IEEE
Transactions on Software Engineering 46(2), 196–221 (2020). https://doi.org/
10.1109/TSE.2018.2844788 3

51. Nguyen, V.Q., Suganuma, M., Okatani, T.: Grit: Faster and better image caption-
ing transformer using dual visual features. In: Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXXVI. pp. 167–184. Springer (2022) 1

52. Peng, Y.H., Bigham, J.P., Pavel, A.: Slidecho: Flexible non-visual exploration of
presentation videos. In: Proceedings of the 23rd International ACM SIGACCESS
Conference on Computers and Accessibility. pp. 1–12 (2021) 2, 14

53. Peng, Y.H., Chi, P., Kannan, A., Morris, M.R., Essa, I.: Slide gestalt: Automatic
structure extraction in slide decks for non-visual access. In: Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems. pp. 1–14 (2023) 2, 11

54. Peng, Y.H., Jang, J., Bigham, J.P., Pavel, A.: Say it all: Feedback for improving
non-visual presentation accessibility. In: Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. pp. 1–12 (2021) 2, 14

55. Peng, Y.H., Lin, M.T., Chen, Y., Chen, T., Ku, P.S., Taele, P., Lim, C.G., Chen,
M.Y.: Personaltouch: Improving touchscreen usability by personalizing accessibility
settings based on individual user’s touchscreen interaction. In: Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. pp. 1–11 (2019)
1

56. Peng, Y.H., Wu, J., Bigham, J., Pavel, A.: Diffscriber: Describing visual design
changes to support mixed-ability collaborative presentation authoring. In: Pro-
ceedings of the 35th Annual ACM Symposium on User Interface Software and
Technology. pp. 1–13 (2022) 2, 5, 10, 14

57. Rodriguez, J.A., Agarwal, S., Laradji, I.H., Rodriguez, P., Vazquez, D., Pal, C.,
Pedersoli, M.: Starvector: Generating scalable vector graphics code from images
(2023) 3

58. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia
dataset: A large collection of synthetic images for semantic segmentation of urban
scenes. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 3234–3243 (2016) 3

59. Schoop, E., Zhou, X., Li, G., Chen, Z., Hartmann, B., Li, Y.: Predicting and
explaining mobile ui tappability with vision modeling and saliency analysis. In:
Proceedings of the 2022 CHI Conference on Human Factors in Computing Sys-
tems. CHI ’22, Association for Computing Machinery, New York, NY, USA
(2022). https://doi.org/10.1145/3491102.3517497, https://doi.org/10.
1145/3491102.3517497 3

https://www.microsoft.com/en-us/microsoft-365-life-hacks/presentations/10-20-30-rule-of-powerpoint
https://www.microsoft.com/en-us/microsoft-365-life-hacks/presentations/10-20-30-rule-of-powerpoint
https://www.microsoft.com/en-us/microsoft-365-life-hacks/presentations/10-20-30-rule-of-powerpoint
https://doi.org/10.1109/TSE.2018.2844788
https://doi.org/10.1109/TSE.2018.2844788
https://doi.org/10.1109/TSE.2018.2844788
https://doi.org/10.1109/TSE.2018.2844788
https://doi.org/10.1145/3491102.3517497
https://doi.org/10.1145/3491102.3517497
https://doi.org/10.1145/3491102.3517497
https://doi.org/10.1145/3491102.3517497

DreamStruct: Understanding Slides and UIs via Synthetic Data Generation 19

60. Sharma, P., Shaham, T.R., Baradad, M., Fu, S., Rodriguez-Munoz, A., Duggal,
S., Isola, P., Torralba, A.: A vision check-up for language models. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
14410–14419 (2024) 3

61. Strizic, M.: App Screens Design (2024), https://decode.agency/article/app-
screens-design/ 4

62. Support, M.: What is a slide layout? (2024), https://support.microsoft.
com/en- us/office/what- is- a-slide- layout- 99da5716-92ee- 4b6a- a0b5-
beea45150f3a 4

63. Swearngin, A., Li, Y.: Modeling mobile interface tappability using crowdsourcing
and deep learning. In: Proceedings of the 2019 CHI Conference on Human Fac-
tors in Computing Systems. p. 1–11. CHI ’19, Association for Computing Machin-
ery, New York, NY, USA (2019). https://doi.org/10.1145/3290605.3300305,
https://doi.org/10.1145/3290605.3300305 3

64. Tan, M., Pang, R., Le, Q.V.: Efficientdet: Scalable and efficient object detection. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition. pp. 10781–10790 (2020) 8

65. Tan, Z., Beigi, A., Wang, S., Guo, R., Bhattacharjee, A., Jiang, B., Karami, M.,
Li, J., Cheng, L., Liu, H.: Large language models for data annotation: A survey
(2024) 4, 14

66. Tanaka, R., Nishida, K., Nishida, K., Hasegawa, T., Saito, I., Saito, K.: Slidevqa: A
dataset for document visual question answering on multiple images. arXiv preprint
arXiv:2301.04883 (2023) 2

67. Thirunavukarasu, A.J., Ting, D.S.J., Elangovan, K., Gutierrez, L., Tan, T.F., Ting,
D.S.W.: Large language models in medicine. Nature medicine 29(8), 1930–1940
(2023) 3

68. Tian, Y., Fan, L., Isola, P., Chang, H., Krishnan, D.: Stablerep: Synthetic images
from text-to-image models make strong visual representation learners (2023) 3

69. Tian, Y., Cui, W., Deng, D., Yi, X., Yang, Y., Zhang, H., Wu, Y.: Chartgpt: Lever-
aging llms to generate charts from abstract natural language. IEEE Transactions
on Visualization and Computer Graphics (2024) 3

70. Tseng, T., Cheng, R., Nichols, J.: Keyframer: Empowering animation design using
large language models. arXiv preprint arXiv:2402.06071 (2024) 3

71. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: A neural image
caption generator. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 3156–3164 (2015) 1

72. Viswanathan, V., Zhao, C., Bertsch, A., Wu, T., Neubig, G.: Prompt2model: Gen-
erating deployable models from natural language instructions (2023) 3, 5

73. Wang, B., Li, G., Zhou, X., Chen, Z., Grossman, T., Li, Y.: Screen2words: Au-
tomatic mobile ui summarization with multimodal learning. In: The 34th Annual
ACM Symposium on User Interface Software and Technology. pp. 498–510 (2021)
3, 10, 11

74. Wang, R., Zhou, W., Sachan, M.: Let’s synthesize step by step: Iterative dataset
synthesis with large language models by extrapolating errors from small models
(2023) 3

75. Westerlund, M.: The emergence of deepfake technology: A review. Technology in-
novation management review 9(11) (2019) 14

76. Wu, J., Barik, T., Zhang, X., Lea, C., Nichols, J., Bigham, J.P.: Reflow: Auto-
matically improving touch interactions in mobile applications through pixel-based
refinements. arXiv preprint arXiv:2207.07712 (2022) 1

https://decode.agency/article/app-screens-design/
https://decode.agency/article/app-screens-design/
https://support.microsoft.com/en-us/office/what-is-a-slide-layout-99da5716-92ee-4b6a-a0b5-beea45150f3a
https://support.microsoft.com/en-us/office/what-is-a-slide-layout-99da5716-92ee-4b6a-a0b5-beea45150f3a
https://support.microsoft.com/en-us/office/what-is-a-slide-layout-99da5716-92ee-4b6a-a0b5-beea45150f3a
https://doi.org/10.1145/3290605.3300305
https://doi.org/10.1145/3290605.3300305
https://doi.org/10.1145/3290605.3300305

20 Peng et al.

77. Wu, J., Krosnick, R., Schoop, E., Swearngin, A., Bigham, J.P., Nichols, J.: Never-
ending learning of user interfaces. In: Proceedings of the 36th Annual ACM Sym-
posium on User Interface Software and Technology. pp. 1–13 (2023) 2, 3

78. Wu, J., Peng, Y.H., Li, A., Swearngin, A., Bigham, J.P., Nichols, J.: Uiclip: A data-
driven model for assessing user interface design. arXiv preprint arXiv:2404.12500
(2024) 14

79. Wu, J., Schoop, E., Leung, A., Barik, T., Bigham, J.P., Nichols, J.: Uicoder: Fine-
tuning large language models to generate user interface code through automated
feedback. arXiv preprint arXiv:2406.07739 (2024) 7, 14

80. Wu, J., Wang, S., Shen, S., Peng, Y.H., Nichols, J., Bigham, J.P.: Webui: A dataset
for enhancing visual ui understanding with web semantics. In: Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems. pp. 1–14 (2023)
2, 9, 13

81. Wu, J., Zhang, X., Nichols, J., Bigham, J.P.: Screen parsing: Towards reverse
engineering of ui models from screenshots. In: The 34th Annual ACM Symposium
on User Interface Software and Technology. p. 470–483. UIST ’21, Association for
Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/
3472749.3474763, https://doi.org/10.1145/3472749.3474763 3

82. Wu, J., Tenenbaum, J.B., Kohli, P.: Neural scene de-rendering. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 699–707
(2017) 3

83. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R.,
Bengio, Y.: Show, attend and tell: Neural image caption generation with visual
attention. In: International conference on machine learning. pp. 2048–2057. PMLR
(2015) 1

84. Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: Bertscore: Evaluating
text generation with bert. arXiv preprint arXiv:1904.09675 (2019) 5

85. Zhang, X., de Greef, L., Swearngin, A., White, S., Murray, K., Yu, L., Shan, Q.,
Nichols, J., Wu, J., Fleizach, C., et al.: Screen recognition: Creating accessibility
metadata for mobile applications from pixels. In: Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems. pp. 1–15 (2021) 3, 8

86. Zhou, S., Xu, F.F., Zhu, H., Zhou, X., Lo, R., Sridhar, A., Cheng, X., Bisk, Y.,
Fried, D., Alon, U., et al.: Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854 (2023) 3

87. Zhou, X., Koltun, V., Krähenbühl, P.: Probabilistic two-stage detection. arXiv
preprint arXiv:2103.07461 (2021) 8

88. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable
transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159
(2020) 8

https://doi.org/10.1145/3472749.3474763
https://doi.org/10.1145/3472749.3474763
https://doi.org/10.1145/3472749.3474763
https://doi.org/10.1145/3472749.3474763
https://doi.org/10.1145/3472749.3474763

	DreamStruct: Understanding Slides and User Interfaces via Synthetic Data Generation

