
Graph4GUI: Graph Neural Networks for Representing Graphical
User Interfaces

Yue Jiang
yue.jiang@aalto.fi
Aalto University

Finland

Changkong Zhou
changkong.zhou@aalto.fi

Aalto University
Finland

Vikas Garg∗
vgarg@csail.mit.edu

YaiYai Ltd and Aalto University
Finland

Antti Oulasvirta∗
antti.oulasvirta@aalto.fi

Aalto University
Finland

a) b)

1

5

6

7

2

3

4

1

2

3Left-Aligned

Left-Aligned

Middle-Aligned

1

2

3

4

5

6

7

1

2

3

1

5

6

7

2

3

4

1

2

3

8

1

2

3

4

5

6

7

1

2

3

8

GNN

Constraint Prediction

1

2

3

M

1

2

N

…
 …

…
 …

1

2

3

4

1

2

3

1

2

3

4

1

2

1

2

3

4

1

2

0     
     

    T
ime t   

     
     

T

Iterative Element PredictionNew Element8

Autocompletion ProcessOne-Step Prediction

Left-Aligned

Left-Aligned

Middle-Aligned

Figure 1: Graph4GUI is a graph-based GUI representation that captures the connections between GUI element properties and
constraints. Such representation can capture the visual–spatial–semantic structure of a GUI such that it could be effectively
employed in computational design. a) To represent the GUIs, bipartite graphs comprising element nodes (colored purple)
convey the GUI elements’ properties and constraint nodes (colored green) that can be integrated into graph neural networks.
Such representation can serve various downstream tasks, such as predicting constraints (dotted orange edge) for an unplaced
element (colored orange). b) By iteratively predicting the sizes and locations of yet-unplaced elements, we can support designers
by autocompleting partially completed GUI designs.

ABSTRACT
Present-day graphical user interfaces (GUIs) exhibit diverse arrange-
ments of text, graphics, and interactive elements such as buttons and
menus, but representations of GUIs have not kept up. They do not
encapsulate both semantic and visuo-spatial relationships among
elements. To seize machine learning’s potential for GUIs more ef-
ficiently, Graph4GUI exploits graph neural networks to capture
individual elements’ properties and their semantic—visuo-spatial
constraints in a layout. The learned representation demonstrated
its effectiveness in multiple tasks, especially generating designs in
a challenging GUI autocompletion task, which involved predicting

∗Co-last authors, equal contribution.

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642822

the positions of remaining unplaced elements in a partially com-
pleted GUI. The new model’s suggestions showed alignment and
visual appeal superior to the baseline method and received higher
subjective ratings for preference. Furthermore, we demonstrate
the practical benefits and efficiency advantages designers perceive
when utilizing our model as an autocompletion plug-in.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; Interaction techniques.

KEYWORDS
Graphical User Interface, User Interface Representation, Constraint-
based Layout, Graph Neural Networks

ACM Reference Format:
Yue Jiang, Changkong Zhou, Vikas Garg, and Antti Oulasvirta. 2024.
Graph4GUI: Graph Neural Networks for Representing Graphical User Inter-
faces. In Proceedings of the CHI Conference on Human Factors in Computing
Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY,
USA, 18 pages. https://doi.org/10.1145/3613904.3642822

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613904.3642822
https://doi.org/10.1145/3613904.3642822


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Jiang et al.

1

Visual Appearance:

Textual Content: ‘Add to Apple Wallet’

Element Type: Button

Position: (x1, y1, x2, y2)

Size: (w, h)

w
h

(x1, y1) 

(x2, y2) 

a) b) Alignment Same-Size Element Grouping Multimodal Grouping

Element Properties Constraints

Left-Aligned

Middle-Aligned

Top-Aligned

Same Width

Same Height

Figure 2: a) Graph4GUI represents each GUI element through a separate node with properties. GUI element nodes convey the
element properties, including visual appearance, textual content, element type, position, and size. b) Constraint nodes express
four types of constraints: alignment, same-size, element grouping, and multimodal grouping constraints.

1 INTRODUCTION
Modern graphical user interfaces (GUIs) are replete with diverse
elements like text, graphics, buttons, checkboxes, sliders, and icons,
arranged in various ways. GUIs deploy visual, spatial, and textual
cues to guide users in their design. For example, colors convey
grouping and attention, while visual cues like proximity or shared
visual areas signal element associations [11]. Elements are ordered
and grouped based on grid lines; for instance, lists are often left-
aligned [53]. In addition, textual elements, such as headers, labels,
and annotations, are needed to communicate the “semantics” of the
various shapes and images. Despite architectural commonalities,
each GUI genre and application has its unique conventions. The
question of how to represent a GUI’s visual–spatial–semantic struc-
ture such that it could be effectively conveyed in computational
design remains open [32, 34–36].

Prior methods for representing GUIs and their constituent ele-
ments fall short of capturing these integrative aspects. Some work
has focused exclusively on textual content in GUIs, but neglected
the visual aspects of design and the variety of GUI elements [45, 46].
In contrast, other approaches emphasize visual appearance and GUI
element types but overlook the content of the elements [1, 15, 50].
This results in similar treatment for GUIs sharing structural and
visual similarities but differing in content. Layout constraints repre-
sent the layout relationships between GUI elements, such as align-
ment, same-size, and grouping. Most existing methods, employing
Convolutional Neural Networks (CNNs) to learn GUI images, face
challenges because they have to learn layout constraints from pixels.
This makes training a model to predict constraints a challenge.

To address this gap, we propose a novel graph-based GUI rep-
resentation Graph4GUI that integrates GUI elements with layout
constraints (Figure 1a). We formulate a bipartite graph to express
GUI elements and their relationships via two kinds of nodes: ele-
ment and constraint nodes. As shown in Figure 2, each GUI element
node represents element properties, including visual appearance,
textual content, element type, position, and size. Constraint nodes
include four types of constraints: alignment, same-size, element
grouping, and multimodal grouping constraints. We then employ

Graph neural networks (GNNs) to learn a domain-specific repre-
sentation from the graph-structured data.

Compared to other GUI representations [1, 13, 15, 45–47, 50],
the design of our GNN aims to balance two representation learn-
ing goals. On the one hand, we want to maximally exploit domain
knowledge, particularly using stable, universal GUI design charac-
teristics without learning from scratch. On the other, we want to
capture contingent design tendencies – such as color palettes and
fonts – without manual specification. If successful, this would make
it possible to learn a useful representation with fewer samples. To
this end, our approach is to represent relatively universal principles
of layouts as constraints in a graph, thus reducing the need to learn
them from scratch. At the same time, genre-specific tendencies are
learned by applying GNNs to capture the design features unique to
GUIs. In contrast, traditional structured representations in compu-
tational design, such as DOM trees, are not designed for learning
but for specifying GUIs. While they represent the view hierarchy
of a layout, they do not lend themselves to many machine learning
methods. For example, there is no natural way to represent the
concept of grid alignment with DOMs, as this information is split
into the leaf nodes of the tree. To compute whether two elements
are aligned, the whole tree needs to be parsed. In contrast, our
method directly embeds connections between GUI elements and
their constraints in the graph.

To examine the effectiveness of our graph-based representation,
we applied it to different applications: GUI autocompletion, GUI
topic classification, and GUI retrieval. Our primary emphasis lies in
autocompletion due to its complexity. This autocompletion problem
is challenging, not only because exploring potential GUI element
combinations is computationally costly but also because good solu-
tions must consider visual, spatial, and semantic constraints among
the to-be-placed elements and those already present. We present
a method for iteratively recommending the position and size of
unplaced GUI elements, as illustrated in Figure 1b. To augment
the model’s usability for designers, we introduce alternative ele-
ment suggestion options, including the recommendation of element



Graph4GUI: Graph Neural Networks for Representing Graphical User Interfaces CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Approach Textual Content Visual Appearance Element Type View Hierarchy Layout Constraints

SUGILITE [45] ✓ ✗ ✗ ✓ ✗

SOVITE [46] ✓ ✗ ✗ ✓ ✗

ERICA [15] ✗ ✓ ✓ ✓ ✗

HAMP [1] ✗ ✓ ✓ ✗ ✗

Liu et al. [15] ✗ ✓ ✓ ✓ ✗

Screen2Vec [47] ✓ ✗ ✓ ✓ ✗

Li et al. [48] ✗ ✗ ✓ ✓ ✗

Brückner et al. [10] ✗ ✗ ✓ ✗ ✗

GRIDS [13] ✗ ✗ ✓ ✗ ✓

Ours ✓ ✓ ✓ ✗ ✓

Table 1: A comparison of existing approaches, marked based on if they explicitly represent: textual content, visual appearance,
GUI element type, view hierarchy, and layout constraints. The view hierarchy, akin to a DOM tree, begins with a root view and
organizes all its descendants in a tree structure. Layout constraints denote relationships like alignment and grouping among
GUI elements. “✓” indicates that the model can capture the factor, while “✗” indicates that it does not.

groups and simultaneous suggestions for all elements. For evalua-
tion, we conducted Study 1, comparing it with GRIDS [13], an ap-
proach for autocompletion using integer programming. Our model
produced suggestions with superior alignment and visual appeal
compared to the baseline, consistent with participants’ preferences.
In Study 2, we integrated our model into a plug-in for a design tool.
It allows GUI designers to utilize autocompletion capabilities in real
time while maintaining full control over the design process within
the interactive design tool. We interviewed six GUI designers to
study our tool’s practical benefits and efficiency advantages.

Our work makes the following contributions:

(1) A novel graph representation for GUIs, Graph4GUI, which
incorporates GUI element properties such as textual con-
tent, visual appearance, and element types, along with their
relationships and constraints.

(2) A graph neural network method for learning the graph repre-
sentation of the GUI to optimize the GUI element dimensions
and positions.

(3) An autocompletion framework that serves to demonstrate
the graph representation facilitating interactive GUI design.
The framework’s effectiveness was evaluated through a com-
parison study and a designer study.

(4) Applying the graph representation to other applications,
including GUI topic classification and GUI retrieval.

2 RELATEDWORK
This section focuses on the limitations of preexisting representa-
tions of GUIs, the GUI-related applications of graph neural net-
works, and constraint-based approaches to layout generation.

2.1 Representations of GUIs
Existing GUI representations often prioritize specific properties
while neglecting others. Table 1 provides a comparison of existing
approaches, marked based on whether they explicitly represent tex-
tual content, visual appearance, GUI element type, view hierarchy,
and layout constraints. Some representations focus on textual con-
tent, ignoring visual appearance and GUI element types [45, 46]. In

contrast, alternative methods prioritize visual appearance and the
types of GUI elements [1, 15, 50], but often overlook the importance
of textual content. This can lead to similar treatment of structurally
and visually similar GUIs that differ significantly in textual content.
Screen2Vec [47] addresses this by generating GUI representations
incorporating textual content, element types, and screen hierarchy.
Our method, Graph4GUI, extends this consideration by incorpo-
rating constraints and interrelationships between GUI elements.
ILuvUI [37] proposed a vision language model to create a language
representation of GUI. A relevant method, GRIDS [13], is an in-
teger programming method optimizing grid layouts using layout
constraints. We also consider layout constraints since they are
important in developing a well-structured GUI design. With our
approach, Graph4GUI, we propose a solution that considers not
only textual content, visual appearance, and GUI element types but
also the constraints and interrelationships between GUI elements.

2.2 Graph Neural Networks on GUIs
Graph neural networks [24, 25, 62, 71] are state-of-the-art models
for encoding graph-structured data. Whereas CNNs rely on convo-
lution over spatial neighborhoods and enjoy widespread application
to encode GUI images, GNNs aggregate information from neigh-
borhoods defined by an input graph that are not restricted to the
spatial domain. This gives them the potential to exploit information
about the GUIs beyond pixel level. Li et al. applied GNNs to denoise
an existing user-interface dataset [44], and performed GUI auto-
completion from the GUI layout hierarchy but failed to generate
visually realistic GUI results [48]. Brückner et al. [10] looked into
constructing a graph using GUI elements’ relative positioning to
predict elements; however, it proved challenging to learn the lay-
out structure from only relative positions. HAMP [2], introduced a
graph representation with nodes for app descriptions, GUI screens,
GUI classes, and element images to perform GUI tasks. Still, such
detailed metadata cannot be extracted from GUI screenshots with-
out extensive manual annotations. In contrast, our application of
GNNs is geared toward modeling the layout graph of GUI elements,
thereby enabling us to capture both the topological intricacies of
the GUI layout and the properties of individual GUI elements.



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Jiang et al.

2.3 Constraint-based Layout Generation
Constraint-based layout models have been widely used in GUI
layouts [3, 5, 6, 8, 28, 40, 51, 52, 60, 61, 63, 66, 68, 72, 75, 76] and
document layouts [7, 29, 30, 41]. Early methods like Peridot [55, 57]
and Lapidary [74] proposed programming by demonstration, au-
tomatically generate constraints for user interfaces based on de-
signer interactions. These models offer greater flexibility for layout
generation than simple layout models such as group, grid, table,
and grid-bag layouts [54, 56, 58]. Prior work proposed constraint-
based layout generation [17, 69]. For instance, SUPPLE [20–22]
presented constraints for alternative widgets and groupings, and
ORCLayout [33, 38, 39] introduced OR-constraint as a mixture
of hard and soft constraints to unify flow-based and constraint-
based layouts. Constraints have functioned also to enable layout
personalization [18], maintaining consistency [19], giving layout-
alternative suggestions based on user-defined constraints [4, 65],
generating layout alternatives from templates or modifiable sugges-
tions [31, 64, 73], and allowing both author and viewer to specify
the layout [7]. Finally, recent work has explored applying deep-
learning approaches to automatic layout generation, eliminating
the need for manually defined constraints [42, 77]. However, none
of these methods predict constraints for GUI elements. Incorpo-
rating GUI element relationships as constraints enables our model
to predict them within the network. This enhances the network’s
ability to establish connections and deepen its comprehension of
both element properties and constraints.

3 GUI LAYOUT PROBLEM
Designing a GUI involves carefully selecting elements and organiz-
ing them into a structure that is usable and aesthetically appealing.
This brings with it a large number of both element-specific and
layout-related decisions and is typically iterative in nature [23].
Our objective is to provide a more comprehensive characterization
of GUIs compared to existing GUI representations by factoring in
visual, spatial, and semantic features. We formulate the problem
by partitioning it into elements and layouts while also defining the
GUI design problem as an optimization process.

3.1 Element Properties
The first major consideration is visual appearance, a broad notion
encompassing such properties as color combinations, geometric
shapes, and GUI styles. For example, employing tranquil hues such
as blues and greens may encourage a calming interface, requiring a
more spacious and streamlined layout. In contrast, energetic shades
(reds, yellows, etc.) might necessitate a more condensed and high-
energy design. Likewise, the arrangement of the various shapes
plays a crucial role in the overall visual appeal of the layout. Equally
essential is the textual content – encompassing all forms of text con-
tent visible in the user interface. Labels can play a crucial role from
the design perspective. The alignment and arrangement of labels
that contain long paragraphs require larger spaces, to avoid clutter
and overlapping. Conversely, elements containing brief text strings
or bullet-point-style items may allow for compaction, thereby leav-
ing room for other pertinent features. The format of the content
is also critical; condensed or expanded layouts especially require

careful consideration of element spacing, alignment, and the over-
all design arrangement. Finally, each element type, such as button,
checkbox, or text field, has inherent functionality and objectives.
For example, buttons need to be easily reachable if user interac-
tion is to be effective, whereas checkboxes might not require such
prominent positioning on account of their less frequent use. Text
fields’ usual dominance as the focal point is due to their role in data
entry, which necessitates adequate design space.

3.2 Layout Constraints
Layout-level properties can be approached as constraints. Imposing
constraints can help maintain consistency across GUIs and aid users
in understanding them. Among commonplace GUI constraints are
keeping similar elements the same size, aligning elements along
a shared grid, and grouping related elements together. The align-
ment constraint, for instance, enforces uniform positioning and
visual consistency by arranging elements along a shared axis, thus
maintaining a structure within the layout [53]. In addition to estab-
lishing relationships among elements, alignment strengthens the
synergy between the elements and the broader layout. The same-
size constraint is equally essential in that it guarantees maintaining
appropriate sizes across GUI elements. This enhances visual har-
mony by making sure of consistent sizing among related elements.
Element grouping is important for enhancing the layout’s organi-
zation and logical structure. This is achieved by bringing together
related elements with similar functions. The strategy promotes user-
friendly navigation. Finally, multimodal grouping constraints lend
a structured feel to varied elements, with coherent organization
across distinct types. This allows for a harmonious combination of
text, images, and other GUI components while remaining respectful
of the layout’s coherence and uniformity principles.

3.3 Formulation of GUI Layout Problem
We can now define the GUI layout problem as an optimization
problem. With this formulation, we decide on the positions and
sizes of elements in a GUI, denoted as 𝑒𝑖 = (𝑥𝑖 , 𝑦𝑖 ,𝑤𝑖 , ℎ𝑖 ), where the
coordinates (𝑥𝑖 , 𝑦𝑖 ) represent the top-left corner of the 𝑖-th element
and (𝑤𝑖 , ℎ𝑖 ) represents its width and height. Here, we focus on a
setting where all the elements are in rectangular bounding boxes.

We define two objective terms, the element loss term (Lele) and
the constraint loss term (Lcons). The first of these encapsulates the
properties of the GUI elements, such as visual appearance, texture
content, and element type. The constraint loss term covers the
layout constraints that guide the GUI design toward an optimal
arrangement. The objective function we defined above becomes

L(𝑒1, 𝑒2, ..., 𝑒𝑁 , F; 𝜆, 𝜂) = Lele (𝑒1, 𝑒2, ..., 𝑒𝑁 , 𝑒1, 𝑒2, ..., 𝑒𝑁 ;𝜂)
+ 𝜆 Lcons (𝑒1, 𝑒2, ..., 𝑒𝑁 , F),

(1)

where F = {𝑓1, 𝑓2, ..., 𝑓𝑁 } pertains to the set of properties for the
𝑁 GUI elements, including the visual appearance, textual content,
and element type. The predicted size and position of each GUI
element are denoted as 𝑒𝑖 = (𝑥𝑖 , 𝑦𝑖 , �̂�𝑖 , ℎ̂𝑖 ), while the ground-truth
sizes and positions are represented by 𝑒𝑖 = (𝑥𝑖 , 𝑦𝑖 ,𝑤𝑖 , ℎ𝑖 ). 𝜆 > 0
is the weight of the constraint loss. 𝜂 > 0 is the weight of the
boundary loss as a part of the element loss term described below.



Graph4GUI: Graph Neural Networks for Representing Graphical User Interfaces CHI ’24, May 11–16, 2024, Honolulu, HI, USA

The element loss term (Lele) refers to the discrepancy between
the predicted and actual values for both positions and sizes of the
GUI elements, with a penalty imposed if the predicted elements are
outside the interface area:

Lele (𝑒1, 𝑒2, ..., 𝑒𝑁 , 𝑒1, 𝑒2, ..., 𝑒𝑁 ;𝜂)
= MSE(𝑒1, 𝑒2, ..., 𝑒𝑁 , 𝑒1, 𝑒2, ..., 𝑒𝑁 ) + B(𝑒1, 𝑒2, ..., 𝑒𝑁 ;𝜂). (2)

We implement the Mean Squared Error (MSE) loss function to
quantify the level of discrepancy between the predicted and the
actual positions and sizes of GUI elements, represented as

MSE(𝑒1, 𝑒2, ..., 𝑒𝑁 , 𝑒1, 𝑒2, ..., 𝑒𝑁 ) = 1
𝑁

𝑁∑︁
𝑖=1

|𝑒𝑖 − 𝑒𝑖 |2 . (3)

The boundary constraint is used to penalize a predicted element
lying outside the interface’s screen space:

B(𝑒1, 𝑒2, ..., 𝑒𝑁 ;𝜂) =
𝑁∑︁
𝑡=1

B(𝑒𝑡 ;𝜂)

= 𝜂 ·
𝑁∑︁
𝑡=1

(
𝑚𝑎𝑥 (−𝑥𝑡 , 0) +𝑚𝑎𝑥 (−𝑦𝑡 , 0)

+𝑚𝑎𝑥 (𝑥𝑡 + �̂�𝑡 −𝑤UI, 0)

+𝑚𝑎𝑥 (𝑦𝑡 + ℎ̂𝑡 − ℎUI, 0)
)
,

(4)

where𝑤UI and ℎUI are the width and height of the GUI.
We introduce the constraint loss term (Lcons) for estimating the

discrepancy between the predicted constraints and the constraints
present in the GUI design. This is measured by means of Binary
Cross Entropy (BCE), whereby evaluates a binary decision for each
constraint, namely, whether it is satisfied or not,

Lcons (𝑒1, . . . , 𝑒𝑁 ,𝑒1, . . . , 𝑒𝑁 , F,𝐶)
= BCE(𝐶 (𝑒1, . . . , 𝑒𝑁 , F), 𝐶 (𝑒1, . . . , 𝑒𝑁 , F)),

(5)

where 𝐶 represents the constraints based on the elements and
element properties calculated as

BCE(𝑐, 𝑐) = −𝑐 log(𝑐) − (1 − 𝑐) log(1 − 𝑐) . (6)
The term −𝑐 log(𝑐) serves to penalize the model when a con-

straint 𝑐 that should be satisfied has a predicted probability 𝑐 ap-
proaching 0 (where the ground-truth value is 1). This encourages
the model to increase the likelihood of satisfying the required con-
straints. Conversely, the term −(1−𝑐) log(1−𝑐) punishes the model
when the predicted probability 𝑐 is near 1 for a constraint 𝑐 that
should not be satisfied (since the ground-truth value is 0). This term
encourages the model to reduce the likelihood of constraints that
ought not be satisfied.

As a result, the formulation of the GUI optimization problem is

(𝑒∗1, 𝑒
∗
2, ..., 𝑒

∗
𝑁 ) = argmin

{𝑒1,𝑒2,...,𝑒𝑁 }

( 1
𝑁

𝑁∑︁
𝑖=1

(𝑒𝑖 − 𝑒𝑖 )2 + B(𝑒1, 𝑒2, ..., 𝑒𝑁 ;𝜂)

+ 𝜆 BCE(𝐶 (𝑒1, . . . , 𝑒𝑁 , F),𝐶 (𝑒1, . . . , 𝑒𝑁 , F))
)
.

(7)

4 GUI REPRESENTATION
Our proposed method is designed to enrich GUI representation by
developing a heterogeneous bipartite graph that covers both GUI
element properties and layout constraints, thereby dealing with the
intricate arrangement and interrelationships among GUI elements.
This graph comprises nodes of two types: GUI element nodes and
constraint nodes. The former expresses element properties specific
to individual GUI elements, and the latter defines layout constraints
for GUI elements in the interface display. Integrating element prop-
erties and layout constraints into a single unified graph facilitates
a thorough representation of a GUI’s elements and layout. While
earlier work has integrated element properties into GUI represen-
tation [47, 49, 59, 67], our approach brings further benefits by not
only accounting for the properties of individual GUI elements but
also capturing their interrelationships and spatial arrangements
within the overall layout.

To ascertain the linkages between GUI elements and constraints,
we connect the respective GUI element nodes to the constraint
nodes with edges. Specifically, GUI element nodes can only con-
nect to GUI constraint nodes, and vice versa. Consequently, the
graph constructed represents the GUI structure by establishing the
relations between elements and constraints through its edges.

4.1 Graph Nodes for GUI Elements
In our graph representation Graph4GUI, each GUI element is sig-
nified by a separate node with properties identifying its position,
size, visual appearance, textual content, and type. We encode these
properties into an embedding vector and concatenate them to form
a single attribute vector for the node (see Figure 2 a).

4.1.1 Position Embedding. We define a GUI element’s position
by the coordinates of its top-left and bottom-right points, repre-
sented as (𝑥1, 𝑦1) and (𝑥2, 𝑦2), respectively. These coordinates spec-
ify the element’s position and size in the GUI. To represent the
position within the graph node, a trainable parametric matrix of
size (𝑚𝑎𝑥 (𝑤,ℎ) + 1) × 256 is used to encode the position, where
𝑤 and ℎ are the GUI’s width and height, respectively. This matrix
maps any coordinate to a 16-dimensional vector. On feeding the four
coordinates into this matrix and flattening the resulting embedding,
a 64-dimensional vector is output as the position embedding.

4.1.2 Size Embedding. While an element’s size can be derived from
its position, it is useful to include a size embedding in our repre-
sentation, especially for tasks such as GUI autocompletion that
require a new element to be placed in the GUI at an unknown posi-
tion. We embed the element size using a process similar to position
embedding. This yields a 256-dimensional-vector size embedding.

4.1.3 Visual Appearance Embedding. We encode the visual appear-
ance of GUI elements by extracting high-level features and convert-
ing them into a feature vector, which serves as the element’s visual
representation.

4.1.4 Textual Content Embedding. The textual content of elements
is represented by encoding textual information into a vector that
captures the semantic meaning and context properties of the text.

4.1.5 Element Type Embedding. GUI element types are represented
as one-hot vectors. For example, in a dataset that contains the



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Jiang et al.

three element types Text, List Item, and Button, a button element
will be assigned a vector of [0, 0, 1] as its type. In the case of our
dataset, which contains 18 distinct element types, the element type
embedding is a one-hot vector of length 18, which is processed by
a trainable matrix to produce the embedding for the element type.

4.2 Graph Nodes for Constraints
Our constructed graph is designed to generalize the definition of
constraints. We represent constraints of different types as separate
nodes in the graph, which enables easy extension of the graph to
include additional kinds of constraints in the future. Currently, we
represent four types of constraints as nodes in the graph: alignment
constraints, same-size constraints, element grouping constraints,
and multimodal constraints (see Figure 2 b).

4.2.1 Alignment Constraint Nodes. We incorporate alignment con-
straint nodes into our graph to stipulate the positional affiliation
among GUI elements. Each node comprises attributes symbolizing
the kind of alignment and the line employed for element align-
ment. Edges are established between GUI elements and their re-
spective alignment constraint nodes to signify their correlation
with alignment. Alignment constraints can express any of six
distinct alignments – namely “left-aligned,” “top-aligned,” “right-
aligned,” “bottom-aligned,” “vertical midline-aligned,” and “horizon-
tal midline-aligned.” We employ a one-hot vector to express the
alignment type. For instance, a left-alignment type is expressed as
[1, 0, 0, 0, 0, 0], indicating left-alignment. We further characterize
the alignment line using a two-dimensional vector – e.g., [𝑎, 0]
represents the elements being aligned with 𝑥 = 𝑎. We concate-
nate the alignment type and line representations to produce an
eight-dimensional vector.

4.2.2 Same-Size Constraint Nodes. To portray GUI elements of
the same width or height within the GUI in graphical terms, we
devised the notion of uniform size constraint nodes. There are two
types of size constraints in our design: identical width and similar
height. We consolidate the size type and size value into a single-
node attribute vector instead of defining them as a one-hot vector.
For example, the identical width constraints are defined by [𝑤, 0],
where 𝑤 is the width value, while constraints dictating identical
height are defined by [0, ℎ], where ℎ is the height value.

4.2.3 Element Grouping Constraint Nodes. Incorporating consider-
ation of related components enhances the structure of GUIs, par-
ticularly with regard to elements with comparable functions or
belonging to the same category. To depict the element grouping
constraints, we define element grouping constraint nodes. We then
connect related GUI element nodes to the corresponding grouping
constraint node, signifying their inclusion in a particular group.

4.2.4 Multimodal Grouping Constraint Nodes. Multimodal group-
ing constraints enable structured organization of elements of differ-
ing types: text, pictures, and other GUI components. We create a set
of nodes for each multimodal grouping constraint and correlate the
relevant elements with their respective nodes. By establishing ties
between GUI element nodes and multimodal grouping constraint
nodes, we signify placing elements that differ in mode within the
same group. In cases of additional multimodal grouping constraints,

we create new types of multimodal grouping constraint nodes and
repeat the process.

4.3 Learning GUI Layout Design with Graph
Neural Networks

As Figure 1a illustrates, we create a graph representation of a GUI
layout by organizing GUI element nodes and constraint nodes.
Again, these nodes are connected by edges, representing the re-
lationships between elements and constraints. To facilitate GUI
design, we can train a graph neural network to take this graph as
input and optimize the layout.

4.3.1 Graph Construction. The heterogeneous bipartite graph,
G = (𝐸 ∪ 𝐶,𝐴), is constructed from 𝑀 GUI element nodes and
their 𝑁 corresponding constraint nodes. The former set of nodes is
represented by 𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑀 }, and the set of their constraint
nodes is denoted by 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑁 }. In constructing links be-
tween element nodes and constraint nodes, we assign the adjacency
matrix𝐴. The value of an element 𝑎𝑖, 𝑗 in that adjacency matrix is set
to 1 when the 𝑖th GUI element is satisfied with the 𝑗th constraint;
otherwise, it is 0.

4.3.2 Predicting GUI Element Dimensions and Positions. The pri-
mary task of our GNN model is to predict the dimensions and po-
sitions of the GUI elements. The predicted GUI element attributes
are denoted by 𝑒𝑖 = (𝑥𝑖 , 𝑦𝑖 , �̂�𝑖 , ℎ̂𝑖 ). These predictions are produced
through parameterized functions specific to the GNN model. The
model parameters are denoted by 𝜃 , and the model that generates
the GUI element predictions is denoted as GNN𝜃 . The predicted
GUI elements 𝑒𝑖 are then computed as

𝑒𝑖 = GNN𝜃 (G). (8)

4.3.3 Optimization of GNN Parameters. The GNNmodel’s 𝜃 param-
eters are optimized by minimizing the previously defined objective
function L; see Subsection 3.3. The optimization process can be
represented as

𝜃∗ = argmin
𝜃

L(𝑒1, 𝑒2, ..., 𝑒𝑁 , F;𝜃 ), (9)

where 𝜃∗ denotes the optimized parameters of the GNN model.
After optimizing the GNN model’s parameters, 𝜃∗, we can use this
model to design new GUI layouts. For a new design, the trained
GNN takes the graph-form representation of GUI elements and
constraints as input, and then outputs its predicted dimensions
and positions for GUI elements. Our approach makes it easy to
incorporate new design constraints by modifying the construction
of the graph or the objective function.

5 GUI AUTOCOMPLETION
To demonstrate the utility of our graph representation, we propose
an autocompletion method that uses our representation approach
to enable interactive iterative design. GUI autocompletion is chal-
lenging due to the computational complexity involved in accurately
predicting suitable GUI elements. Given fixed screen dimensions,
our method automatically generates suggestions for finishing a
partially completed GUI layout by iteratively predicting the posi-
tions of remaining unplaced GUI elements. Our method suggests



Graph4GUI: Graph Neural Networks for Representing Graphical User Interfaces CHI ’24, May 11–16, 2024, Honolulu, HI, USA

1

5

6

7

2

3

4

1

2

3

4

5

6

7

1

1
Left-Aligned

2 Left-Aligned

3
Middle-Aligned

2

3

G

8

1

G

8

Constraint 
Prediction

Initial 
Result

Final Result

4
Multimodal Grouping

4

GNN

3

1 4

2 3 4 3 6

1 1 1 4 2 41 4

3

1 4

2 3 4 3 6

3

1 4

Layer 1:

Layer 2:

Layer 3:

7 11 4 G𝑾 " (    ...          ...    ) =

Refine

New Element8

Figure 3: Graph4GUI was adapted for the autocompletion task: We first encode the graph representation of the GUI via the
GNN. We only illustrate some parts of the graph for simplicity. Element 8 is the target to-be-placed element. In each GNN
layer, nodes perform aggregation from their respective neighbors. To illustrate, consider element node 3. As it goes through the
GNN layers, it accumulates information from related constraint nodes and other element nodes. This process results in feature
embedding vectors for all nodes, including both element nodes and constraint nodes within the graph. We compute the graph
embedding as a weighted average of the node embeddings with the weight matrix𝑊 . We then concatenate the target element’s
embedding vector, the graph embedding, and a constraint embedding and send it to fully connected layers to predict whether
the target to-be-placed element should satisfy the constraint. Simultaneously, we concatenate the target element’s embedding
and the graph embedding to predict the initial position and size of the target element. Integrating these predictions with the
constraints, we subsequently refine the position and size to obtain the final results.

position, size, and confidence level for each unplaced element based
on the partial GUI. It enables designers to receive suggestions when
they complete the design of each element, without the need to
predefine all GUI elements beforehand. Moreover, if designers have
additional unplaced GUI elements ready, our method iterates over
each, providing suggestions for their positions, sizes, and confi-
dence levels. It can significantly reduce the manual effort required
for design. Autocompletion that produces high-quality GUIs is ren-
dered difficult by the high computational complexity of evaluating
all possible combinations of GUI elements.

Prior studies have explored the autocompletion task; however,
they were only capable of handling wireframes. Li et al. [48] used
the GUI layout hierarchy to perform GUI autocompletion. Although
the hierarchy does capture the structure of the layout, it accounts
for only the grouping and containment relationships between GUI
elements. It neglects the alignments and relative sizes, which are im-
portant layout constraints. On the other hand, Brückner et al. [10]
proposed a method of constructing a graph with reference to dif-
ferences in position between GUI elements. However, it does not
consider the properties of GUI elements. GRIDS [13] is a grid-layout-
based optimization approach for autocompletion considering con-
straints such as alignment and grouping. With integer program-
ming, GRIDS produces results by searching for optimal available
placements for unplaced elements. Our method, considering both

element properties and constraints, fills the gap, crossing the void
to generate more desirable predictions.

5.1 Target GUI Element Prediction
Given a partial GUI, we set out to predict both the size and the
position of a target element (with a fixed aspect ratio) and the as-
sociated constraints it should follow. As shown in Figure 3, the
process begins with constructing a graph representation of the par-
tial GUI, denoted as G𝑝 . Exploiting GNNs, we encode this graph to
yield feature vectors for all the nodes, including element nodes and
constraint nodes within the graph. Within each GNN layer, nodes
are aggregated from their respective neighbors. Going through the
GNN layers, each node iteratively accumulates information from
its associated constraint nodes and other element nodes.

G𝑝
GNN−−−−→ {h𝑒𝑙𝑒,1, h𝑒𝑙𝑒,2, ...}, {h𝑎𝑙𝑖𝑔𝑛,1, h𝑎𝑙𝑖𝑔𝑛,2, ...},

{h𝑠𝑖𝑧𝑒,1, h𝑠𝑖𝑧𝑒,2, ...}, {h𝑒𝑔,1, h𝑒𝑔,2, ...}, {h𝑚𝑔,1, h𝑚𝑔,2, ...},
(10)

where {ℎ𝑒𝑙𝑒,1, ℎ𝑒𝑙𝑒,2, ...} are the feature vectors for ele-
ment nodes, {ℎ𝑎𝑙𝑖𝑔𝑛,1, ℎ𝑎𝑙𝑖𝑔𝑛,2, ...} those for alignment con-
straint nodes, {ℎ𝑠𝑖𝑧𝑒,1, ℎ𝑠𝑖𝑧𝑒,2, ...} those for size constraint nodes,
{ℎ𝑒𝑔,1, ℎ𝑒𝑔,2, ...} the ones for element grouping constraint nodes, and
{ℎ𝑚𝑔,1, ℎ𝑚𝑔,2, ...} the vectors for multimodal grouping constraint
nodes.



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Jiang et al.

After this, the feature vector ℎG𝑝
for the entire graph G𝑝 is com-

puted. This vector is obtained by way of the weighted summation of
the average feature vectors of each node type. The weight matrices
W𝑒𝑙𝑒 ,W𝑎𝑙𝑖𝑔𝑛,W𝑠𝑖𝑧𝑒 ,W𝑒𝑔, andW𝑚𝑔 are trained alongside GNN
parameters, making sure an end-to-end training process ensues
that eliminates manual selection:

ℎG =W𝑒𝑙𝑒 ·avg{h𝑒𝑙𝑒,1, h𝑒𝑙𝑒,2, ...}+W𝑎𝑙𝑖𝑔𝑛 ·avg{h𝑎𝑙𝑖𝑔𝑛,1, h𝑎𝑙𝑖𝑔𝑛,2, ...}
+W𝑠𝑖𝑧𝑒 ·avg{h𝑠𝑖𝑧𝑒,1, h𝑠𝑖𝑧𝑒,2, ...} +W𝑒𝑔 · avg{h𝑒𝑔,1, h𝑒𝑔,2, ...}
+W𝑚𝑔 · avg{h𝑚𝑔,1, h𝑚𝑔,2, ...}.

(11)

The resulting graph feature vector and the embedding of the
target element are concatenated and fed into fully connected lay-
ers. This facilitates position and size predictions for the target GUI
element 𝑒𝑡 = (𝑥𝑡 , 𝑦𝑡 , �̂�𝑡 , ℎ̂𝑡 ). Furthermore, our approach extends
to predicting the constraints that should be satisfied by the target
GUI element. We utilize the objective function outlined in Section
3 to perform fine optimization of the target element’s position-
ing, dimensions, and adherence to constraints. For each constraint
within the partial GUI, we concatenate the graph feature vector,
the embedding of the target element, and the specific constraint’s
feature vector. This concatenated vector is propagated through
fully connected layers to predict the probability of each constraint
required for the target GUI element’s satisfaction. Simultaneously,
we concatenate the target element’s embedding and the graph em-
bedding to predict the initial position and size of the target element.
Integrating these predictions with the constraints, we subsequently
refine the position and size to obtain the final results.

5.2 Confidence Levels
To guide the process of ascertaining the level of confidence in the
outcomes, below we describe how we compute confidence levels
such that we can avoid offering potentially questionable predictions.
Conveying the confidence level – whether it is low, medium, or
high – of a certain prediction enables software tools and designers
to take suitably informed actions. An application of this feature
will be discussed later in the designer study.

5.2.1 High Confidence. High confidence is validated in terms of
alignment and uniform size constraints. When the disparity be-
tween the predicted alignment line and the position of the target
element falls below the threshold value 𝜎 , refinement is performed
by aligning the position with the projected alignment line. For in-
stance, if the predicted constraint entails left-alignment with the
line 𝑥 = 𝑎, and if |𝑥𝑡 − 𝑎 | ≤ 𝜎 , the 𝑥𝑡 value is adjusted to match 𝑎.
This threshold was set to 𝜎 = 20 pixels in our experiments. Like-
wise, when the difference between the size of the target element and
the sizes of other elements, as predicted by constraints promoting
uniformity, is below the 𝜎 limit, the size is adjusted to match the
uniform size value. For example, if the projected constraint dictates
that the target element should possess the same width as elements
with a width of 𝑏, and if |�̂�𝑡 − 𝑏 | ≤ 𝜎 , the �̂�𝑡 value is adjusted to
align with 𝑏. When both (𝑥𝑡 , 𝑦𝑡 ) and at least one of �̂�𝑡 and ℎ̂𝑡 can
be verified, we assign a high confidence level to the outcome, since
the fixed aspect ratio of the target element allows deducing the
remaining attribute.

5.2.2 Medium Confidence. Medium confidence is established via
element and multimodal grouping constraints. In scenarios wherein
confirmation is unattainable for (𝑥𝑡 , 𝑦𝑡 ) and at least one of �̂�𝑡 and
ℎ̂𝑡 , grouping constraints come into play. These constraints, encom-
passing both element and multimodal grouping, reveal patterns
among elements and can be exploited for refinement of positions
and sizes. For example, vertical groupings often entail consistent
widths and equidistant spacing between elements vertically. Conse-
quently, if |�̂�𝑡 − avg(𝑤𝑖 ) | ≤ 𝜎 , where𝑤𝑖 represents widths of other
elements in the target’s vertical group, �̂�𝑡 is adjusted to match
avg(𝑤𝑖 ). If (�̂�𝑡 −𝑤𝑙 ) − avg( |𝑤𝑖 −𝑤𝑖 − 1|) ≤ 𝜎 , the �̂�𝑡 value is set
to𝑤𝑙 + avg( |𝑤𝑖 −𝑤𝑖 − 1|). In instances where (𝑥𝑡 , 𝑦𝑡 ), along with
at least one of �̂�𝑡 and ℎ̂𝑡 , can be verified, the result gets accorded a
medium confidence rating.

5.2.3 Low Confidence. In all other cases, the outcomes are assigned
a low confidence rating.

6 EXPERIMENTS FOR AUTOCOMPLETION
We conducted experiments for the autocompletion task to show
the effectiveness of our representation. We created a dataset with
partial GUIs and then evaluated our method’s prediction quality
through qualitative and quantitative experiments. Additionally, we
conducted an ablation study to demonstrate the necessity of each
constraint type taken into account.

6.1 Dataset and Training Process
For the evaluation, we took the ENRICO dataset [43], a subset of
the RICO dataset [14] including cleaner mobile GUI information
and the VINS [12] GUI dataset, as our basis for creating a mobile
dataset for GUI autocompletion. We improved the dataset’s quality
through several steps. Initially, we excluded layouts in the dataset
that contain three or fewer. GUI elements. After this, we employed
the UIED model [70] to enhance the precision of element types
and refine the bounding boxes of the GUI elements. We then made
further adjustments manually to correct the bounding boxes of the
elements. Our refined dataset contains 5,653 GUIs in total.

To evaluate our model’s performance, we followed a fivefold
cross-validation approach; this technique involved partitioning
the GUI dataset into five equal-sized folds. Four of the folds, with
approximately 4,522 GUIs, served for training our model, while we
reserved one fold, encompassing around 1,131 GUIs, for testing. In
our experiments, each fold was utilized once for testing, with the
remaining four folds serving as the training data. Using fivefold
cross-validation helps to validate the generalization of the model to
unseen data and offers a more comprehensive view of the model’s
behavior by averaging its performance across multiple test sets,
thus reducing the impact of random variations in the data.

To create our dataset for GUI autocompletion, for each GUI, we
randomly kept a chunk of GUI elements on the display. We removed
other GUI elements to create a partial GUI and store the potential
“next GUI element” to be added for completing the given partial
GUI. By this mechanism, we obtained a partially completed GUI
with missing elements and a target element that we need to predict,
given the partially completed GUI. Note that each partial GUI often
had more than one potential target GUI element. With this method,
we can generate various partial GUIs and corresponding target



Graph4GUI: Graph Neural Networks for Representing Graphical User Interfaces CHI ’24, May 11–16, 2024, Honolulu, HI, USA

elements. We generated partial GUIs for training from the complete
GUIs in the training data, doing similarly for the test data. In total,
each fold of complete GUIs yielded approximately 171,212 pairs
of partial GUIs and corresponding target elements for training.
Consequently, for each experiment, we used a training dataset
containing about 684,849 incomplete-GUI–target pairs and a test
dataset comprising approximately 171,212 pairs.

6.2 Implementation Details
6.2.1 Embeddings. We encoded the visual appearance of the ele-
ment by using a pre-trained ResNet152 model [27]. Through this
model, which is able to extract high-level features from images, we
generated a feature vector that represents the element’s visual ap-
pearance. For encoding the textual content of the GUI elements, we
used a pre-trained BERT model [16]. A Transformer-based neural-
network architecture pre-trained on a large corpus of text data,
BERT can generate a 768-dimensional vector representing the text,
which we applied to extract features from the interface elements.
In a technique that improves the efficiency of models utilizing this
representation, we introduced an “unknown” token for infrequent
words. Infrequent words are often inadequately represented in train-
ing data. That can lead to overfitting. Incorporating an unknown
token enables the model to generalize its predictions for previ-
ously unseen words and simplify the representation to facilitate
the model’s processing. To implement this approach, we began by
computing the frequency of each text element. If the text occurred
fewer than three times, we replaced it with the special token [UNK]
in BERT, representing an unknown word. We then used BERT to
generate the text content embedding.

6.2.2 Graph Neural Networks. We applied the SAGEConv model
[26], a variety of GNN models that is suited to training heteroge-
neous graphs. The SAGEConv model employs a message-passing
technique to propagate information through the graph to convey it
from a node’s neighborhood to the node itself, thereby improving
its feature representation. SAGEConv can capture the relationships
between nodes of different types in the graph. The output feature
vectors are 256-dimensional ℎ ∈ R256. The trainable weights for
computingW𝑒𝑙𝑒 ,W𝑎𝑙𝑖𝑔𝑛 ,W𝑠𝑖𝑧𝑒 ,W𝑒𝑔 ,W𝑚𝑔 ∈ R are in the dimen-
sion of 256 × 256.

6.3 Qualitative Evaluation
To enhance the usability of the model for designers, we introduce
three types of element suggestion options and show the results.

6.3.1 Suggesting a Single Element. As Figure 1b indicates, itera-
tively predicting the sizes and positions of yet-unplaced elements by
means of the updated graph representation helps support designers
by autocompleting partially completed designs. By default, we loop
over all elements still to be placed and select the one with the high-
est associated confidence level to add (Figure 4a). Furthermore, our
setting allowed designer-in-the-loop interaction wherein designers
can make adjustments to the GUI design as their preferences dictate
after every iteration. They could move the element, resize it, or
select an alternative GUI element for placement. The changes are
visible immediately, and the underlying graph representation gets

updated accordingly, so that subsequent predictions can work from
it, as demonstrated in Figure 4b.

6.3.2 Suggesting a Group of Elements. Ourmodel predicts grouping
constraints for each element based on the partial GUI. As shown in
Figure 4c, if multiple elements share the same grouping constraint,
our model suggests these grouped elements together, thereby expe-
diting the prediction process.

6.3.3 Suggesting All Elements. Alternatively, in Figure 4d, the
model can predict all elements simultaneously. The final results
iterate over each element, placing those with the highest confidence
levels first, based on the updated partial GUI. While providing a
complete view, modifying results can be more challenging com-
pared to adjustments in the iterative prediction process.

6.4 Quantitative Evaluation
To evaluate the accuracy of our autocompletion approach, we as-
sessed its single-step prediction by three metrics. For this purpose,
we denoted the top-left point of the predicted GUI element as (𝑥,𝑦)
and its corresponding ground truth as (𝑥,𝑦). Similarly, we denoted
the predicted size of the target GUI element as (�̂�, ℎ̂) and its corre-
sponding ground truth as (𝑤,ℎ). Finally,𝑤UI and ℎUI represent the
width and height of the user interface.

6.4.1 Metrics. We established separate metrics for assessing the
predictions’ accuracy with regard to position, size, and alignment.
All three metrics have a range between 0 and 1, where a lower value
indicates a better prediction.

• Position Error (PosError): The PosError metric measures
the relative distance between the predicted position of the
GUI element and the corresponding ground-truth position.
Calculating the error entails ascertaining the distance be-
tween the predicted and ground-truth positions, then normal-
izing it by the maximum possible distance that the element
can move,

LPosError =
| | (𝑥,𝑦) − (𝑥,𝑦) | |2√︃

(𝑤UI − �̂�)2 + (ℎUI − ℎ̂)2
. (12)

• Area Error (AreaError): The AreaError metric evaluates
the difference between the predicted size of the GUI element
and the corresponding ground-truth size. The difference
between the predicted and ground-truth sizes is normalized
in terms of the maximum size between the predicted size
and the ground-truth size,

LAreaError =
|�̂� · ℎ̂ −𝑤 · ℎ |

max(�̂� · ℎ̂,𝑤 · ℎ)
. (13)

• Alignment Error (AlignError): The AlignError metric
judges the proportion of the alignments predicted correctly.
This figure is calculated by dividing the number of correctly
predicted alignments for the target element by the total num-
ber of alignments that the predicted element should satisfy.

6.4.2 Comparison. We compared our model and GRIDS [13], an
optimization approach based on grid layout designed for autocom-
pletion while considering constraints, including alignment, element
location, rectangular outline, and preferred element positions. We



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Jiang et al.

a)

b)

c) d)

Suggesting a Single Element:

Suggesting a Single Element with User Modification:

Suggesting a Group of Elements: Suggesting all Elements:

Figure 4: a) Our model can iteratively predict unplaced GUI elements (shown in blue bounding boxes). b) Designers can make
adjustments (orange), including moving, resizing, or re-selecting GUI elements. c) The model’s capability to predict groupings
allows for the placement of elements together as a group. d) The model can also predict all the elements simultaneously.



Graph4GUI: Graph Neural Networks for Representing Graphical User Interfaces CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 5: Comparison of our model with GRIDS [13], an autocompletion approach using integer programming, and the
established upper bound for the model’s performance exploiting ground-truth constraints to predict positions and sizes.
The evaluation used three metrics: position error, size error, and alignment error. This comparison incorporates fivefold
cross-validation to assure reliability, with the mean and standard deviation illustrated in the corresponding plots.

Figure 6: Results from an ablation study comparing our model’s performance to ablated models in which each type of constraint
has been removed.

chose GRIDS for comparison due to the following reasons: 1) it
also takes constraints into account, 2) the majority of existing GUI
presentations do not perform autocompletion, and enabling auto-
completion is non-trivial, 3) other relevant prior works [10, 48]
addressing autocompletion tasks are not open-sourced. With inte-
ger programming, GRIDS produces results by seeking the optimal
placements available for unplaced elements. It generates multiple
optimized solutions, each accompanied by a confidence value. We
chose the solution with the highest confidence value among each
model’s first 10 solutions. In addition, we established an upper
bound for the model’s performance by employing ground-truth
constraints to predict element positions and sizes. Because of the
ambiguity of GUI element placement, the ground truth thus defined
was not assigned a zero-loss value. The ambiguity arises from the
fact that some elements do not satisfy enough constraints; that issue,
in turn, makes accurate prediction of their placement challenging.
Our comparison by all three metrics was performed relative to the
number of preexisting elements in the partial GUIs, as Figure 5
illustrates. We used fivefold cross-validation for the comparisons
(our plots present both mean and standard deviation values), with a
sample of 10,000 test data from each fold used for model evaluation.
Since our technique uses ground-truth alignments in predicting

the ground truth, we do not have ground-truth results for align-
ment error. The results show that our model predicts more accurate
positions and sizes, with more accurate alignments, than GRIDS.
Finally, we computed the inference time needed by the models. Our
model performs one-step predictions in 0.148 seconds, on average,
with our test data on a single RTX4090 GPU, while GRIDS takes
much longer, at 67.4 seconds.

6.4.3 The Ablation Study. Our ablation study compared the pro-
posed model to ablated models, each lacking one specific type of
constraint. This ablation study, the results of which are depicted in
Figure 6, showed the necessity of each constraint for our model’s
performance.

7 COMPARISON STUDY
We performed a comparison study to evaluate our model against
GRIDS [13] for one-step prediction. We got test images randomly
sampled from the test dataset described in subsection 6.1. All the im-
ages are mobile GUIs. As Graph4GUI optimizes positions and sizes
with content and graphics, while GRIDS only handles wireframe
layouts, the comparison focuses on wireframes. To ensure fairness,
we trained our model on wireframe GUIs without visual appear-
ance, textual content, or element type, showcasing higher perceived
quality despite not fully utilizing Graph4GUI’s capabilities.



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Jiang et al.

Figure 7:We implemented ourmethod as a Figma plug-in. The plug-in offers GUI element prediction suggestionswith confidence
levels, helping designers prioritize element selection. It also features a preview window that shows a prediction preview of
the element placed on the GUI when hovering over an element, providing an intuitive view to help decision-making. After
selecting a GUI element, the plug-in can automatically place it in the suggested position and size on the canvas.

7.1 Method
7.1.1 Participants. We enlisted 35 participants (25 female, 9 male,
1 other) through social media, averaging 26.49 years (SD = 3.07).
All had normal or corrected-to-normal vision, and none were col-
orblind. Local regulations did not mandate formal ethics review.

7.1.2 Experimental Design. From 1,000 randomly sampled partial
GUIs with a to-be-placed element, we randomly selected 100 pre-
sented to each participant for comparison between our method and
the GRIDS method.

7.1.3 Apparatus. Pairs of GUI images were presented side by side
on a custom webpage in randomized order.

7.1.4 Procedure. After completing a demographics questionnaire,
participants viewed GUI pairs and selected the preferred one based
on personal criteria like design, layout, or aesthetics. Preferences
were indicated by choosing the left or right image, or “They are
equally good”. Participants could assess up to 100 pairs, stopping
at their discretion.

7.2 Findings
We received responses for 3,367 image pairs from 35 participants.
Preferences were as follows: 456 for GRIDS (13.54%), 2,368 for our
model (70.33%), and 543 expressing no preference (16.13%). The
difference between our method and GRIDS was statistically signif-
icant (𝜒2 = 3115.8, 𝑝 < .001). This finding attests that our model
indeed produces more visually appealing suggestions that show

better alignment than the baseline method’s output, backing up
our conclusions with evidence from participants’ preferences.

8 DESIGNER STUDY
We conducted a user study to evaluate the effectiveness and usabil-
ity of our method for assisting with GUI autocompletion. The aim
was to assess both the impact on design efficiency and the subjec-
tive experience. To guide the design of the study, we established
the following objectives:

(1) Determine whether our technique enables designers to en-
hance the efficiency of the design process.

(2) Evaluate the quality of suggestions provided by our model.
(3) Explore how designers utilize each function of the tool,

specifically the element prediction preview, the element pre-
diction, and the confidence rating for the predictions.

(4) Ascertain whether designers perceived our technique as help-
ful for their GUI design practice.

8.1 Method
8.1.1 Plug-in. Our method is implemented as a Figma plug-in
(Figure 7), offering GUI element predictions with confidence levels.
Given a partially completed GUI and a list of elements to be placed,
the plug-in computes confidence levels for each prediction, aiding
designers in prioritizing placements. The plug-in includes a preview
window that displays awireframe version of the GUIwhen hovering
over an element, allowing designers to assess results intuitively.



Graph4GUI: Graph Neural Networks for Representing Graphical User Interfaces CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Upon selecting a GUI element, the plug-in automatically positions
and sizes it on the canvas.

8.1.2 Participants. Six GUI designers with diverse experience lev-
els were recruited through email lists, local networks, and social
media platforms. Participants, aged 21 to 33 (mean age 26.5), were
either UI/UX designers or HCI/design students, all experienced in
Figma for GUI design. The group comprised four females and two
males. Prior to the study, participants received full information
about the conditions and gave informed consent. Local regulations
do not require formal ethics review.

8.1.3 Materials. Participants used the lab’s laptops for various
activities, including interacting with the Figma interface using our
plug-in and filling out a questionnaire. The study involved a practice
task to acquaint participants with Figma and our plug-in, and six
GUI design tasks (three with our plug-in and three without). Each
task provided a brief outlining the GUI design purpose, a GUI to be
completed, and a list of elements to place.

8.1.4 Experiment Design. The study used a within-subject design,
exposing participants to two conditions. In one condition, they
freely used our plug-in with Figma’s standard features to complete
three GUIs (login, shopping, and menu pages). In the baseline con-
dition, participants completed the same GUIs without the plug-in.
Task and condition order were fully counterbalanced to eliminate
any potential bias.

8.1.5 Procedure. After signing the consent form, participants com-
pleted a design background questionnaire and underwent a Figma
tutorial. They were then tasked with creating six GUIs in two con-
ditions: with and without our plug-in. After each task, participants
rated their designs and assessed the perceived task load. In the
with-plug-in condition, they also evaluated the plug-in’s specific
features. We used the System Usability Scale (SUS) for overall us-
ability assessment. We conducted final interviews for participants
to compare their experiences, provide feedback on plug-in features,
and identify weaknesses in our tool.

8.2 Quantitative Findings
Our tool’s usability and helpfulness were quantitatively evaluated
using the System Usability Score, participant ratings of features
and resulting GUIs, and task completion times.

8.2.1 System Usability Score. Following established practices [9],
SUS scores were computed, yielding an average of 87.08 (SD = 5.48).
This significantly surpasses the average SUS score of 68, indicating
excellent usability. Participants found our plug-in easy to use, with
design features enhancing their GUI design process.

8.2.2 Ratings of Plug-in Features. Participants rated each plug-in
feature on a scale of 1 to 7, with the model scoring 6.77 for preview
(SD = 0.47), 5.83 for element prediction (SD = 0.69), and 6.17 for con-
fidence level (SD = 0.69). Participants prefer features of prediction
confidence and previews before actual element placement.

8.2.3 Ratings of Result GUIs. Participants provided an integer score
out of 7 for each GUI design, with no significant differences between
conditions in ratings for completed GUIs (𝑡 = 0.396, 𝑝 = 0.695).
The average rating with the plug-in was 6.28 (SD = 0.65), and

without the plug-in was 6.17 (SD = 0.96). Participants reported
having terminated their design process upon achieving satisfaction
with the GUIs.

8.2.4 Timing. Without our plug-in, the average finishing time was
approximately 5.6 minutes (SD = 1.02), while with the plug-in,
times mostly ranged from 1 to 3 minutes (Mean = 2.22, SD = 0.78).
The significant difference (𝑡 = −11.71, 𝑝 < .001) indicates a 40%
improvement in GUI design task completion time with our plug-in.

8.2.5 Summary. The high SUS score suggests ease of use and ben-
efits for participants in their GUI design process. Our plug-in sig-
nificantly improved efficiency, reducing task completion time by
approximately 40%. Participants favored features such as element
prediction preview, confidence level indicator, and element predic-
tion. However, no significant difference in GUI quality was observed
between plug-in usage and non-usage, as indicated by participant
ratings of result GUIs.

8.3 Qualitative Findings
Alongside quantitative analysis, we performed qualitative analysis.
Overall, participants gave positive feedback, especially on providing
proper suggestions for GUI element prediction and omitting many
manual design operations, with P2 mentioning that “suggestions for
element prediction are reasonable and have saved me some time on
manual editing and aligning elements.”.

8.3.1 Workflow. Participants appreciated the integration of our
method as a Figma plug-in. Since Figma is a popular design software,
P3 concluded, “It is very useful to have this kind of integration; I do
not need to spend time learning a completely new tool to use these
functions, and now I can simply use the software I normally use
at work.” P5 held the same opinion, stating, “This plug-in doesn’t
interrupt my design process; it’s more like an add-on that helps with
my design and provides inspiration. The operations are intuitive, so
there is no need for us to learn how to use it specifically.” Some
participants also praised the ease of element placement and thought
the plug-in makes the design process more efficient; e.g., “I often
had to place the elements one by one, but now I can just click, and
the plug-in directly suggests the proper placement. It is easy and less
time-consuming.” (P6).

8.3.2 Functionality. Participants highlighted the usefulness of the
preview window, with P5 noting its role in exploration and inspi-
ration: “It is interesting to see element prediction previews for each
element in the preview window. I could hover over each element to
get intuition as to how the GUI looks after placing it without the need
to actually place it and undo it if I do not like the result. This can be
used as an exploration process to help me compare different elements
intuitively without additional effort. ” and P3 emphasized that the
preview window gives designers “a good way to visualize element
suggestions.” In addition, P2 mentioned that the combination of
preview and confidence level makes for better exploration: “‘ I used
the preview to compare the predictions among elements with high
confidence – or medium if no element with high confidence exists – to
decide which one I preferred to place first. I do not need to think much
about which element I want to place since the confidence level helped



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Jiang et al.

Model Overall Profile Menu Login Settings Tutorial Form Gallery List
ResNet50 28.35 0.00 16.10 0.00 81.65 0.00 0.00 0.00 47.62
Nearest Neighbors 30.62 65.96 46.19 43.33 14.75 65.57 68.00 19.01 7.44
Random Forest 82.39 58.51 95.34 70.00 80.22 54.10 69.33 86.97 91.07
Ours 91.53 79.79 96.19 75.00 85.97 90.16 88.67 97.89 95.24

Table 2: GUI topic classification results: Comparing the accuracy rates of our graph-based GUI representation method and the
ResNet50, Nearest Neighbors, and Random Forest models for GUI topics.

me narrow down the options. ” Additionally, all the participants ap-
preciated the convenience of automatically predicting alignments
and sizes; for instance, P4 stated, “It works particularly well when
the to-be-placed element needs to align with some existing elements
or have the same size as them.”

8.3.3 Limitations. While acknowledging the advantages, partici-
pants identified some limitations. Specifically, P2, P3, and P5 criti-
cized the method’s accuracy when the unplaced element does not
need to align or group with any existing GUI element. Furthermore,
P3 and P4 pointed out that the method provides only one suggestion
per element, limiting exploration possibilities.

9 OTHER APPLICATIONS
In addition to GUI autocompletion, we further explored other ap-
plications using our graph-based GUI representation.

9.1 GUI Topic Classification
GUI topic classification involves categorizing GUIs based on their
topics and usage. For instance, “Gallery” GUIs exhibit a grid-like
layout with images, while “Profile” GUIs display information related
to user profiles or products. Our approach utilized GUI representa-
tion for classification, employing eight GUI topics derived from the
Enrico dataset [43]. We sampled 10,000 GUIs, comprising both com-
plete and partial instances from the Enrico GUIs associated with
these eight topics, with a maximum of 2,000 instances for each GUI
topic. The dataset was split into 85% for training and 15% for testing.
The graph representation of each GUI was fed into a Graph Neural
Network (GNN) to obtain the graph embedding, following the same
process used in the autocompletion task (refer to Section 5). The
classification process involved three fully connected layers and a
softmax function, resulting in an accuracy rate of 91.53%, higher
than other baselines. A comparison with the ResNet50, Nearest
Neighbors, and Random Forest models is presented in Table 2.

9.2 GUI Retrieval
GUI retrieval is the process of finding the most similar GUI to a
given one. Utilizing the graph embedding from our trained GUI
topic classificationmodel, we applied the nearest neighbor approach
to identifying the closest GUIs. Samples demonstrating the perfor-
mance of our model and the Screen2Vec model [47] in retrieving
both complete and partial GUIs are shown in Figure 8 (More results
can be seen in the supplementary materials).

9.2.1 User Study. A comparison study was conducted to assess
our model against Screen2Vec.

Participants. Fifteen participants (9 female, 6 male) were re-
cruited through social media promotion. All participants had nor-
mal vision or vision corrected to normal with glasses. None were
colorblind. Local regulations do not require formal ethics review.

Experimental Design. From a pool of 1,500 randomly sampled
partial and complete GUIs, we randomly selected 100 GUIs for each
participant and presented the results retrieved by our method and
the Screen2Vec method.

Apparatus. Pairs of GUI images, one predicted by our method
and one by Screen2Vec, were displayed side by side on a custom
webpage in randomized order.

Procedure. Participants began with a demographics question-
naire, followed by evaluating GUI images and selecting their prefer-
ences based on personal assessment criteria. Each participant could
assess up to 100 pairs and could stop comparisons at any point.

Findings. We obtained 1,144 responses from 15 participants. Pref-
erenceswere as follows: 37 for Screen2Vec (3.23%), 426 for ourmodel
(37.24%), and 681 for images perceived as equally good (59.53%). The
difference between our method and Screen2Vec was statistically
significant (𝜒2 = 827.5, 𝑝 < .001). This indicates that our model
retrieved more visually similar GUIs compared to Screen2Vec.

10 DISCUSSION AND CONCLUSION
This paper addressed the challenges of representing GUIs through
a graph-based deep learning model. Prior deep learning-based GUI
representations failed to consider the constraints for GUI elements
and the visual-spatial-semantic structure of a GUI, which are im-
portant in computational design. Although many modern GUI tools
use constraints to optimize GUIs, training a model to predict con-
straints remains a challenge. Our proposed novel graph-based GUI
representation captures both the properties of GUI elements, such
as textual content, visual appearance, and element types, and their
relationships in the visual, spatial, and semantic dimensions of a
GUI. It can be computed efficiently in computational design. We
further trained graph neural networks (GNNs) to take the graph as
input to optimize the GUI. We will release our code and data.

Our work has achieved the following results in the GUI auto-
completion task.

(1) Our method predicts the position, size, and alignment of
GUI elements more accurately. As shown in Figure 5, it
achieves less than half of the error values in these three met-
rics (position, size, and alignment) compared to GRIDS [13],
an approach for autocompletion using integer programming.
When the number of existing elements on the GUI increases,



Graph4GUI: Graph Neural Networks for Representing Graphical User Interfaces CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Input GUI Ours Screen2Vec Input GUI Ours Screen2Vec

C
om

pl
et
e
G
U
I

Input GUI Ours Screen2Vec Input GUI Ours Screen2Vec

Pa
rt
ia
lG

U
I

Figure 8: GUI retrieval results of our model and Screen2Vec, including both complete GUIs and partial GUIs.

it remains to have low error rates while GRIDS’s errors dra-
matically increase.

(2) Our model offers superior alignment and visual appeal com-
pared to the baseline method, and is better aligned with
participants’ preferences. In our comparison study, 70.33%
of the responses preferred results from our model compared
to 13.54% for GRIDS.

(3) Our method enhances flexibility by integrating as a plug-in
within a popular existing design tool, Figma. This integration
allows designers to apply workflows they are already famil-
iar with, eliminating the need to learn new tools or switch
between different design software tools. Participants in the
designer study praised the plug-in for accelerating their de-
sign process without disrupting the existing functionalities
of their design applications.

In addition to the demonstrated capability of our graph-based
GUI representation in the GUI autocompletion task, we show that
our GUI representation can be applied to other applications, such as
GUI topic classification and GUI retrieval. Our model demonstrated
superior accuracy in GUI topic classification compared to baseline
methods like ResNet50, Nearest Neighbors, and Random Forest. Fur-
thermore, user feedback highlighted our model’s effectiveness in
retrieving visually similar GUIs compared to the Screen2Vec model.
Compared to other data-driven approaches, our graph-based repre-
sentation facilitates the understanding of GUI structure, improving

the explainability of the model. This capacity enables our represen-
tation to potentially extend to diverse downstream tasks. For exam-
ple, accessibility needs can also be represented as constraints [22],
and our method can train and predict layout constraints, thus it
could potentially enhance accessibility.

10.1 Limitations and Future Work
As pointed out by participants in our designer study, our method
has limited ability to generate accurate predictions if the unplaced
element does not need to align or group with any existing element
on the GUI. We currently assign a low confidence level to it to
avoid uncertain predictions. Future work can improve the predic-
tion of underconstrained GUI elements by considering more design
priors or including more complicated constraints. As shown in
Table 1, our representation does not explicitly represent the view
hierarchy. The view hierarchy provides structural data, aiding mod-
els in understanding the layout and relationships of elements. We
do not currently represent view hierarchies since they are not al-
ways available and often contain errors with incorrect structure
information. However, future work can connect related element
nodes in the graph representation to represent the view hierarchy.
Moreover, while our method offers suggestions for each element
to be placed, it provides only a single suggestion per element, thus
constraining the possibility of exploration. In addition, we focus
on a setting where all the elements are rectangular in shape or in
rectangular bounding boxes. There are no datasets available with
non-rectangular bounding boxes. To accommodate various shapes



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Jiang et al.

Figure 9: Limitation of our method: It cannot capture the
semantic correspondence between different types of GUI
elements, like associating the “Favorite” text with a “star”
icon, which could be explored further in future research.

of bounding boxes, we can augment the element node with addi-
tional parameters. These parameters would facilitate the description
of common shapes, such as rectangles with rounded corners and
circles. Subsequently, the model can be retrained to incorporate
this information when present in the training dataset. Furthermore,
we observe that even for element prediction with high confidence
levels, sometimes it does not predict ideal results. For example, as
illustrated in Figure 9, our method cannot capture the semantic
correspondence between different types of GUI elements, e.g., it
cannot detect that the “Favorite” text should correspond to the
“star” icon. Future research could explore more about GUI element
correspondence and constraints across UI types.

ACKNOWLEDGMENTS
We appreciate the active discussion with Zixin Guo and Haishan
Wang. This work was supported by Aalto University’s Department
of Information and Communications Engineering, the Research
Council of Finland (flagship program: Finnish Center for Artifi-
cial Intelligence, FCAI, grants 328400, 345604, 341763; Subjective
Functions, grant 357578), and the Meta PhD Fellowship.

REFERENCES
[1] Gary Ang and Ee-Peng Lim. 2022. Learning and Understanding User Interface

Semantics from Heterogeneous Networks with Multimodal and Positional At-
tributes. ACM Trans. Interact. Intell. Syst. (Dec 2022). https://doi.org/10.1145/
3578522

[2] Gary Ang and Ee-Peng Lim. 2022. Learning and Understanding User Inter-
face Semantics from Heterogeneous Networks with Multimodal and Positional
Attributes. ACM Transactions on Interactive Intelligent Systems (2022).

[3] Greg J. Badros, Alan Borning, and Peter J. Stuckey. 2001. The Cassowary Linear
Arithmetic Constraint Solving Algorithm. ACM Trans. Comput.-Hum. Interact. 8,
4 (Dec. 2001), 267–306. https://doi.org/10.1145/504704.504705

[4] Pavol Bielik, Marc Fischer, and Martin Vechev. 2018. Robust Relational Layout
Synthesis from Examples for Android. Proc. ACM Program. Lang. 2, OOPSLA,
Article 156 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276526

[5] Thomas Bill, Bertil Lundell, John Alan McDonald, and Michael Sannella. 1992.
Bricklayer: Window Layout Using Linear Programming. Technical Report. Univer-
sity of Washington, New York, NY, USA.

[6] Alan Borning and Robert Duisberg. 1986. Constraint-Based Tools for Building
User Interfaces. ACM Trans. Graph. 5, 4 (oct 1986), 345–374. https://doi.org/10.
1145/27623.29354

[7] Alan Borning, Richard Kuang-Hsu Lin, and Kim Marriott. 2000. Constraint-based
document layout for the Web. Multimedia systems 8, 3 (2000), 177–189.

[8] Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao. 1997. Solving Linear
Arithmetic Constraints for User Interface Applications. In Proceedings of the 10th
Annual ACM Symposium on User Interface Software and Technology. ACM, Banff,
Alberta, Canada, 87–96. https://doi.org/10.1145/263407.263518

[9] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation
in industry 189, 194 (1996), 4–7.

[10] Lukas Brückner, Luis A Leiva, and Antti Oulasvirta. 2022. Learning GUI Comple-
tions with User-defined Constraints. ACM Transactions on Interactive Intelligent
Systems (TiiS) 12, 1 (2022), 1–40.

[11] Duncan P. Brumby and Susan Zhuang. 2015. Visual Grouping in Menu Interfaces.
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (2015). https://api.semanticscholar.org/CorpusID:14994819

[12] Sara Bunian, Kai Li, Chaima Jemmali, Casper Harteveld, Yun Fu, and Magy Seif
Seif El-Nasr. 2021. VINS: Visual Search for Mobile User Interface Design. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York,
NY, USA, Article 423, 14 pages. https://doi.org/10.1145/3411764.3445762

[13] Niraj Ramesh Dayama, Kashyap Todi, Taru Saarelainen, and Antti Oulasvirta.
2020. GRIDS: Interactive Layout Design with Integer Programming. Association
for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/
3313831.3376553

[14] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset
for building data-driven design applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. 845–854.

[15] Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016. ERICA: Interaction Min-
ing Mobile Apps. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology (Tokyo, Japan) (UIST ’16). Association for ComputingMa-
chinery, New York, NY, USA, 767–776. https://doi.org/10.1145/2984511.2984581

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[17] James Fogarty and Scott E. Hudson. 2003. GADGET: a Toolkit for Optimization-
Based Approaches to Interface and Display Generation. In Proceedings of the 16th
Annual ACM Symposium on User Interface Software and Technology (Vancouver,
Canada) (UIST ’03). ACM, 125–134. https://doi.org/10.1145/1186562.1015789

[18] Krzysztof Gajos and Daniel Weld. 2005. Preference Elicitation for Interface
Optimization. UIST: Proceedings of the Annual ACM Symposium on User Interface
Softaware and Technology, 173–182. https://doi.org/10.1145/1095034.1095063

[19] Krzysztof Gajos, AnthonyWu, and Daniel S Weld. 2005. Cross-device consistency
in automatically generated user interfaces. In Proceedings of the 2nd Workshop on
Multi-User and Ubiquitous User Interfaces. 7–8.

[20] Krzysztof Z. Gajos, Daniel S. Weld, and Jacob O. Wobbrock. 2008. Decision-
Theoretic User Interface Generation. In AAAI’08. AAAI Press, 1532–1536.

[21] Krzysztof Z. Gajos, Daniel S. Weld, and Jacob O. Wobbrock. 2010. Automatically
Generating Personalized User Interfaces With Supple, In Proceedings of the 9th
International Conference on Intelligent User Interfaces. Artif. Intell 174, 12-13,
910–950. https://doi.org/10.1016/j.artint.2010.05.005

[22] Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S. Weld. 2008. Improving the
Performance of Motor-Impaired Users With Automatically-Generated, Ability-
Based Interfaces. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Florence, Italy) (CHI ’08). ACM, 1257–1266. https://doi.org/
10.1145/1357054.1357250

[23] Wilbert O Galitz. 2007. The essential guide to user interface design: an introduction
to GUI design principles and techniques. John Wiley & Sons.

[24] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. 2020. Generalization and
Representational Limits of Graph Neural Networks. In Proceedings of the 37th
International Conference on Machine Learning (ICML). PMLR, 3419–3430. https:
//proceedings.mlr.press/v119/garg20c.html

[25] M. Gori, G. Monfardini, and F. Scarselli. 2005. A new model for learning in graph
domains. In Proceedings. 2005 IEEE International Joint Conference on Neural Net-
works, 2005., Vol. 2. 729–734 vol. 2. https://doi.org/10.1109/IJCNN.2005.1555942

[26] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[28] Hiroshi Hosobe. 2000. A Scalable Linear Constraint Solver for User Interface
Construction. In Proceedings of the 6th International Conference on Principles and

https://doi.org/10.1145/3578522
https://doi.org/10.1145/3578522
https://doi.org/10.1145/504704.504705
https://doi.org/10.1145/3276526
https://doi.org/10.1145/27623.29354
https://doi.org/10.1145/27623.29354
https://doi.org/10.1145/263407.263518
https://api.semanticscholar.org/CorpusID:14994819
https://doi.org/10.1145/3411764.3445762
https://doi.org/10.1145/3313831.3376553
https://doi.org/10.1145/3313831.3376553
https://doi.org/10.1145/2984511.2984581
https://doi.org/10.1145/1186562.1015789
https://doi.org/10.1145/1095034.1095063
https://doi.org/10.1016/j.artint.2010.05.005
https://doi.org/10.1145/1357054.1357250
https://doi.org/10.1145/1357054.1357250
https://proceedings.mlr.press/v119/garg20c.html
https://proceedings.mlr.press/v119/garg20c.html
https://doi.org/10.1109/IJCNN.2005.1555942


Graph4GUI: Graph Neural Networks for Representing Graphical User Interfaces CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Practice of Constraint Programming (CP ’02). Springer-Verlag, Berlin, Heidelberg,
218–232. https://doi.org/10.1007/3-540-45349-_17

[29] Hiroshi Hosobe. 2005. Solving Linear and One-Way Constraints for Web Docu-
ment Layout. In Proceedings of the 2005 ACM Symposium on Applied Computing
(Santa Fe, New Mexico) (SAC ’05). Association for Computing Machinery, New
York, NY, USA, 1252–1253. https://doi.org/10.1145/1066677.1066959

[30] Nathan Hurst, Kim Marriott, and Peter Moulder. 2003. Cobweb: A Constraint-
Based WEB Browser. In Proceedings of the 26th Australasian Computer Science
Conference - Volume 16 (Adelaide, Australia) (ACSC ’03). Australian Computer
Society, Inc., AUS, 247–254.

[31] Charles Jacobs, Wilmot Li, Evan Schrier, David Bargeron, and David Salesin.
2003. Adaptive Grid-Based Document Layout. In ACM SIGGRAPH 2003 Papers
(San Diego, California) (SIGGRAPH ’03). ACM, 838–847. https://doi.org/10.1145/
1201775.882353

[32] Yue Jiang. 2024. Computational Representations for Graphical User Interfaces.
In Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing
Systems (CHI EA ’24).

[33] Yue Jiang, Ruofei Du, Christof Lutteroth, and Wolfgang Stuerzlinger. 2019. ORC
Layout: Adaptive GUI Layout with OR-Constraints. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). Association for Computing Machinery, New York, NY, USA, Article
413, 12 pages. https://doi.org/10.1145/3290605.3300643

[34] Yue Jiang, Yuwen Lu, Clara Kliman-Silver, Christof Lutteroth, Toby Jia-Jun Li,
Jeffrey Nichols, and Wolfgang Stuerzlinger. 2024. Computational Methodologies
for Understanding, Automating, and Evaluating User Interfaces. In Extended
Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems
(CHI EA ’24).

[35] Yue Jiang, Yuwen Lu, Christof Lutteroth, Toby Jia-Jun Li, Jeffrey Nichols, and
Wolfgang Stuerzlinger. 2023. The Future of Computational Approaches for
Understanding and Adapting User Interfaces. In Extended Abstracts of the 2023
CHI Conference on Human Factors in Computing Systems (Hamburg, Germany)
(CHI EA ’23). Association for Computing Machinery, New York, NY, USA, Article
367, 5 pages. https://doi.org/10.1145/3544549.3573805

[36] Yue Jiang, Yuwen Lu, Jeffrey Nichols, Wolfgang Stuerzlinger, Chun Yu, Christof
Lutteroth, Yang Li, Ranjitha Kumar, and Toby Jia-Jun Li. 2022. Computational
Approaches for Understanding, Generating, and Adapting User Interfaces. In
Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Sys-
tems (NewOrleans, LA, USA) (CHI EA ’22). Association for ComputingMachinery,
New York, NY, USA, Article 74, 6 pages. https://doi.org/10.1145/3491101.3504030

[37] Yue Jiang, Eldon Schoop, Amanda Swearngin, and Jeffrey Nichols. 2023. ILuvUI:
Instruction-tuned LangUage-Visionmodeling of UIs fromMachine Conversations.
arXiv preprint arXiv:2310.04869 (2023).

[38] Yue Jiang, Wolfgang Stuerzlinger, and Christof Lutteroth. 2021. ReverseORC:
Reverse Engineering of Resizable User Interface Layouts with OR-Constraints. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York,
NY, USA, Article 316, 18 pages. https://doi.org/10.1145/3411764.3445043

[39] Yue Jiang, Wolfgang Stuerzlinger, Matthias Zwicker, and Christof Lutteroth. 2020.
ORCSolver: An Efficient Solver for Adaptive GUI Layout with OR-Constraints. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York,
NY, USA, 1–14. https://doi.org/10.1145/3313831.3376610

[40] Solange Karsenty, James A. Landay, and Chris Weikart. 1993. Inferring Graphical
ConstraintsWith Rockit. In Proceedings of the Conference on People and Computers
VII (York, United Kingdom) (HCI’92). Cambridge University Press, 137–153. https:
//doi.org/10.1007/3-540-58601-_91

[41] Markku Laine, Yu Zhang, Simo Santala, Jussi P. P. Jokinen, and Antti Oulasvirta.
2021. Responsive and Personalized Web Layouts with Integer Programming.
Proc. ACM Hum.-Comput. Interact. 5, EICS, Article 213 (May 2021), 23 pages.
https://doi.org/10.1145/3461735

[42] Hsin-Ying Lee, Lu Jiang, Irfan Essa, Phuong B Le, Haifeng Gong, Ming-Hsuan
Yang, and Weilong Yang. 2019. Neural Design Network: Graphic Layout Genera-
tion with Constraints. arXiv e-prints (2019), arXiv–1912.

[43] Luis A Leiva, Asutosh Hota, and Antti Oulasvirta. 2020. Enrico: A dataset for
topic modeling of mobile UI designs. In 22nd International Conference on Human-
Computer Interaction with Mobile Devices and Services. 1–4.

[44] Gang Li, Gilles Baechler, Manuel Tragut, and Yang Li. 2022. Learning to denoise
raw mobile UI layouts for improving datasets at scale. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems. 1–13.

[45] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating
Multimodal Smartphone Automation by Demonstration. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado,
USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA,
6038–6049. https://doi.org/10.1145/3025453.3025483

[46] Toby Jia-Jun Li, Jingya Chen, Haijun Xia, Tom M. Mitchell, and Brad A. Myers.
2020. Multi-Modal Repairs of Conversational Breakdowns in Task-Oriented
Dialogs. In Proceedings of the 33rd Annual ACM Symposium on User Interface Soft-
ware and Technology (Virtual Event, USA) (UIST ’20). Association for Computing

Machinery, New York, NY, USA, 1094–1107. https://doi.org/10.1145/3379337.
3415820

[47] Toby Jia-Jun Li, Lindsay Popowski, Tom Mitchell, and Brad A Myers. 2021.
Screen2Vec: Semantic Embedding of GUI Screens and GUI Components. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York,
NY, USA, Article 578, 15 pages. https://doi.org/10.1145/3411764.3445049

[48] Yang Li, Julien Amelot, Xin Zhou, Samy Bengio, and Si Si. 2020. Auto completion
of user interface layout design using transformer-based tree decoders. arXiv
preprint arXiv:2001.05308 (2020).

[49] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. 2020. Map-
ping Natural Language Instructions to Mobile UI Action Sequences. In Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics, Online, 8198–8210. https:
//doi.org/10.18653/v1/2020.acl-main.729

[50] Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning Design Semantics for Mobile Apps. In Proceedings of the
31st Annual ACM Symposium on User Interface Software and Technology (Berlin,
Germany) (UIST ’18). Association for Computing Machinery, New York, NY, USA,
569–579. https://doi.org/10.1145/3242587.3242650

[51] Christof Lutteroth, Robert Strandh, and Gerald Weber. 2008. Domain specific
high-level constraints for user interface layout. Constraints 13, 3 (2008), 307–342.

[52] Ethan Marcotte. 2011. Responsive Web Design. A book apart.
[53] Aliaksei Miniukovich and Antonella De Angeli. 2015. Computation of interface

aesthetics. In Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems. 1163–1172.

[54] Brad Myers, Scott E. Hudson, and Randy Pausch. 2000. Past, Present, and Future
of User Interface Software Tools. ACM Trans. Comput.-Hum. Interact. 7, 1 (March
2000), 3–28. https://doi.org/10.1145/344949.344959

[55] Brad A. Myers. 1990. Creating User Interfaces Using Programming by Example,
Visual Programming, and Constraints. ACM Trans. Program. Lang. Syst. 12, 2
(apr 1990), 143–177. https://doi.org/10.1145/78942.78943

[56] Brad A. Myers. 1995. User Interface Software Tools. ACM Trans. Comput.-Hum.
Interact. 2, 1 (March 1995), 64–103. https://doi.org/10.1145/200968.200971

[57] Brad A. Myers and William Buxton. 1986. Creating Highly-Interactive and
Graphical User Interfaces by Demonstration. SIGGRAPH Comput. Graph 20, 4
(1986), 249–258. https://doi.org/10.1145/15922.15914

[58] Brad A. Myers, Richard G. Mcdaniel, Robert C. Miller, Alan S. Ferrency, Andrew
Faulring, Bruce D. Kyle, Ieee Computer Society, Ieee Computer Society, Andrew
Mickish, Alex Klimovitski, and Patrick Doane. 1997. The Amulet Environment:
NewModels for Effective User Interface Software Development. IEEE Transactions
on Software Engineering 23 (1997), 347–365.

[59] Panupong Pasupat, Tian-Shun Jiang, Evan Liu, Kelvin Guu, and Percy Liang.
2018. Mapping natural language commands to web elements. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Brussels, Belgium, 4970–4976. https:
//doi.org/10.18653/v1/D18-1540

[60] Erica Sadun. 2013. iOS Auto Layout Demystified. Addison-Wesley Professional,
Boston, US.

[61] Alireza Sahami Shirazi, Niels Henze, Albrecht Schmidt, Robin Goldberg, Benjamin
Schmidt, and Hansjörg Schmauder. 2013. Insights Into Layout Patterns of Mobile
User Interfaces by an Automatic Analysis of Android Apps. In Proceedings of
the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(London, United Kingdom) (EICS ’13). ACM, Gothenburg, Sweden, 275–284. https:
//doi.org/10.1145/3197231.3197249

[62] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2009. The Graph Neural Network Model. IEEE Transactions on Neural
Networks 20, 1 (2009), 61–80. https://doi.org/10.1109/TNN.2008.2005605

[63] Adriano Scoditti and Wolfgang Stuerzlinger. 2009. A New Layout Method for
Graphical User Interfaces. In Science and Technology for Humanity (TIC-STH),
2009 IEEE Toronto International Conference. IEEE, 642–647. https://doi.org/10.
1016/j.infsof.2015.10.005

[64] Nishant Sinha and Rezwana Karim. 2015. Responsive Designs in a Snap. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 544–554. https://doi.org/10.1145/2786805.2786808

[65] Amanda Swearngin, Chenglong Wang, Alannah Oleson, James Fogarty, and
Amy J. Ko. 2020. Scout: Rapid Exploration of Interface Layout Alternatives through
High-Level Design Constraints. Association for Computing Machinery, New York,
NY, USA, 1–13. https://doi.org/10.1145/3313831.3376593

[66] Pedro Szekely and Brad Myers. 1988. A User Interface Toolkit Based on Graphical
Objects and Constraints. SIGPLAN Not. 23, 11 (jan 1988), 36–45. https://doi.org/
10.1145/62084.62088

[67] Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi Grossman, and Yang
Li. 2021. Screen2Words: Automatic Mobile UI Summarization with Multimodal
Learning. In Proceedings of the 34th Annual ACM Symposium on User Interface
Software and Technology (UIST), (Virtual Event, USA) (UIST ’21). Association for
Computing Machinery, New York, NY, USA, 498–510. https://doi.org/10.1145/
3472749.3474765

https://doi.org/10.1007/3-540-45349-_17
https://doi.org/10.1145/1066677.1066959
https://doi.org/10.1145/1201775.882353
https://doi.org/10.1145/1201775.882353
https://doi.org/10.1145/3290605.3300643
https://doi.org/10.1145/3544549.3573805
https://doi.org/10.1145/3491101.3504030
https://doi.org/10.1145/3411764.3445043
https://doi.org/10.1145/3313831.3376610
https://doi.org/10.1007/3-540-58601-_91
https://doi.org/10.1007/3-540-58601-_91
https://doi.org/10.1145/3461735
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3379337.3415820
https://doi.org/10.1145/3379337.3415820
https://doi.org/10.1145/3411764.3445049
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.1145/3242587.3242650
https://doi.org/10.1145/344949.344959
https://doi.org/10.1145/78942.78943
https://doi.org/10.1145/200968.200971
https://doi.org/10.1145/15922.15914
https://doi.org/10.18653/v1/D18-1540
https://doi.org/10.18653/v1/D18-1540
https://doi.org/10.1145/3197231.3197249
https://doi.org/10.1145/3197231.3197249
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1016/j.infsof.2015.10.005
https://doi.org/10.1016/j.infsof.2015.10.005
https://doi.org/10.1145/2786805.2786808
https://doi.org/10.1145/3313831.3376593
https://doi.org/10.1145/62084.62088
https://doi.org/10.1145/62084.62088
https://doi.org/10.1145/3472749.3474765
https://doi.org/10.1145/3472749.3474765


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Jiang et al.

[68] Gerald Weber. 2010. A Reduction of Grid-Bag Layout to Auckland Layout. In
Proceedings of the 2010 21st Australian Software Engineering Conference (ASWEC
’10). IEEE Computer Society, 67–74. https://doi.org/10.1109/ASWEC.2010.38

[69] Daniel S. Weld, Corin Anderson, Pedro Domingos, Oren Etzioni, Krzysztof Gajos,
Tessa Lau, and Steve Wolfman. 2003. Automatically Personalizing User Interfaces.
In Proceedings of the 18th International Joint Conference on Artificial Intelligence
(Acapulco, Mexico) (IJCAI’03). Morgan Kaufmann Publishers Inc., 1613–1619.
http://dl.acm.org/citation.cfm?id=1630659.1630944

[70] Mulong Xie, Sidong Feng, Zhenchang Xing, Jieshan Chen, and Chunyang Chen.
2020. UIED: a hybrid tool for GUI element detection. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1655–1659.

[71] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions (ICLR). https://openreview.net/forum?id=ryGs6iA5Km

[72] Brad Vander Zanden and Brad A.Myers. 1990. Automatic, Look-and-Feel Indepen-
dent Dialog Creation for Graphical User Interfaces. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Seattle, Washington, USA)
(CHI ’90). ACM, Seattle, Washington, USA, 27–34. https://doi.org/10.1007/978-3-
319-67744-_2

[73] Brad Vander Zanden and Brad A. Myers. 1990. Automatic, Look-and-Feel In-
dependent Dialog Creation for Graphical User Interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Seattle, Washington,
USA) (CHI ’90). ACM, 27–34. https://doi.org/10.1007/978-3-319-67744-_2

[74] Brad Vander Zanden and Brad A Myers. 1991. The Lapidary Graphical Interface
Design Tool. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. ACM, New York, NY, USA, 465–466. https://doi.org/10.1145/
108844.109005

[75] Clemens Zeidler, Christof Lutteroth, Gerald Weber, and Wolfgang Stürzlinger.
2012. The Auckland Layout Editor: An Improved GUI Layout Specification
Process. In Proceedings of the 13th International Conference of the NZ Chapter
of the ACM’s Special Interest Group on Human-Computer Interaction (Dunedin,
New Zealand) (CHINZ ’12). Association for Computing Machinery, New York,
NY, USA, 103. https://doi.org/10.1145/2379256.2379287

[76] C. Zeidler, G. Weber, A. Gavryushkin, and Christof Lutteroth. 2017. Tiling algebra
for constraint-based layout editing. J. Log. Algebraic Methods Program. 89 (2017),
67–94.

[77] Xinru Zheng, Xiaotian Qiao, Ying Cao, and Rynson W. H. Lau. 2019. Content-
Aware Generative Modeling of Graphic Design Layouts. ACM Trans. Graph. 38,
4, Article 133 (July 2019), 15 pages. https://doi.org/10.1145/3306346.3322971

https://doi.org/10.1109/ASWEC.2010.38
http://dl.acm.org/citation.cfm?id=1630659.1630944
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1007/978-3-319-67744-_2
https://doi.org/10.1007/978-3-319-67744-_2
https://doi.org/10.1007/978-3-319-67744-_2
https://doi.org/10.1145/108844.109005
https://doi.org/10.1145/108844.109005
https://doi.org/10.1145/2379256.2379287
https://doi.org/10.1145/3306346.3322971

	Abstract
	1 Introduction
	2 Related Work
	2.1 Representations of GUIs
	2.2 Graph Neural Networks on GUIs
	2.3 Constraint-based Layout Generation

	3 GUI Layout Problem
	3.1 Element Properties
	3.2 Layout Constraints
	3.3 Formulation of GUI Layout Problem

	4 GUI Representation
	4.1 Graph Nodes for GUI Elements
	4.2 Graph Nodes for Constraints
	4.3 Learning GUI Layout Design with Graph Neural Networks

	5 GUI Autocompletion
	5.1 Target GUI Element Prediction
	5.2 Confidence Levels

	6 Experiments For Autocompletion
	6.1 Dataset and Training Process
	6.2 Implementation Details
	6.3 Qualitative Evaluation
	6.4 Quantitative Evaluation

	7 Comparison Study
	7.1 Method
	7.2 Findings

	8 Designer Study
	8.1 Method
	8.2 Quantitative Findings
	8.3 Qualitative Findings

	9 Other Applications
	9.1 GUI Topic Classification
	9.2 GUI Retrieval

	10 Discussion and Conclusion
	10.1 Limitations and Future Work

	Acknowledgments
	References

