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Figure 1: AXNav interprets accessibility test instructions specifed in natural language, executes them on a remote cloud device 
using an LLM-based multiagent planner, and produces a chaptered video of the test annotated with heuristics that highlight 
potential accessibility issues. To execute a test, AXNav provisions a cloud iOS device; stages the device by installing the target 
app to be tested and enabling a specifed assistive feature; synthesizes a tentative step-by-step plan to execute the test from the 
test instructions; executes each step of the plan, updating the plan as needed; and annotates a screen recording of the test with 
chapter markers and visual elements that point out potential accessibility issues. 

ABSTRACT 
Developers and quality assurance testers often rely on manual test-
ing to test accessibility features throughout the product lifecycle. 
Unfortunately, manual testing can be tedious, often has an over-
whelming scope, and can be difcult to schedule amongst other 
development milestones. Recently, Large Language Models (LLMs) 
have been used for a variety of tasks including automation of UIs. 
However, to our knowledge, no one has yet explored the use of LLMs 
in controlling assistive technologies for the purposes of supporting 
accessibility testing. In this paper, we explore the requirements of a 
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natural language based accessibility testing workfow, starting with 
a formative study. From this we build a system that takes a manual 
accessibility test instruction in natural language (e.g., “Search for 
a show in VoiceOver”) as input and uses an LLM combined with 
pixel-based UI Understanding models to execute the test and pro-
duce a chaptered, navigable video. In each video, to help QA testers, 
we apply heuristics to detect and fag accessibility issues (e.g., Text 
size not increasing with Large Text enabled, VoiceOver navigation 
loops). We evaluate this system through a 10-participant user study 
with accessibility QA professionals who indicated that the tool 
would be very useful in their current work and performed tests 
similarly to how they would manually test the features. The study 
also reveals insights for future work on using LLMs for accessibility 
testing. 

CCS CONCEPTS 
• Human-centered computing → Accessibility systems and 
tools; Interactive systems and tools; • Computing methodolo-
gies → Multi-agent planning. 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Taeb, Swearngin, Schoop, et. al. 

KEYWORDS 
Accessibility, UI testing, Large language models 

ACM Reference Format: 
Maryam Taeb, Amanda Swearngin, Eldon Schoop, Ruijia Cheng, Yue Jiang, 
and Jefrey Nichols. 2024. AXNav: Replaying Accessibility Tests from Nat-
ural Language. In Proceedings of the CHI Conference on Human Factors in 
Computing Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM, 
New York, NY, USA, 16 pages. https://doi.org/10.1145/3613904.3642777 

1 INTRODUCTION 
Many mobile apps still have incomplete support for accessibility 
features [4, 23, 43, 56, 57]. Developers of these apps may not im-
plement or test accessibility support due to a lack of awareness 
[4], organizational support [8, 43], or experience in accessibility 
testing [8]. For apps that do support accessibility features, devel-
opers often work in tandem with experienced accessibility quality 
assurance (QA) testers [8]. Employees in both roles may use auto-
mated tools like accessibility scanners [2, 3], linters [27], and test 
automation [21, 55] to execute UI test scenarios. However, despite 
many available tools, the majority of testing for accessibility is 
still done manually. This may in part be due to the limitations of 
the tools themselves. For instance, UI tests can be brittle [32, 40] 
or non-existent [17, 30, 34], and scanners can provide false posi-
tives [50]. In addition, manual testing can reveal issues that cannot 
be detected by automated techniques alone [37]. 

However, manually testing all possible accessibility scenarios 
and features is costly and hard to scale. In a formative study with 
six accessibility QA testers, we found they often had difculties 
keeping up with the scope of apps and features they were assigned 
to test. This causes testers to limit the scope of their tests, potentially 
letting bugs slip through, and can lead to test instructions becoming 
outdated. While research has addressed some of these challenges 
through automation [44, 45], there are still manual costs associated 
with writing and recording tests to be replayed. Recorded tests 
often need to be updated when the UI or navigation fow changes, 
similar to UI automation tests, which must specify each step in the 
navigation fow in code [32, 40]. 

To address some of these challenges and support existing manual 
testing workfows of accessibility QA testers, we explore the use of 
natural language instructions to specify accessibility testing steps 
to a system. Manual test instructions are common artifacts within 
organizations that often have large databases of manual steps for 
QA testers. Our system, AXNav, interprets natural language test 
instructions to produce a set of concrete actions that can be taken in 
an app, which it then adapts automatically as the interface evolves. 
AXNav executes these actions on a live cloud device, enabling and 
confguring accessibility features as needed, and runs heuristics on 
target screens to fag potential issues to manual testers. AXNav’s 
output is a chaptered, annotated video that captures the interaction 
trace along with heuristic results. 

Our approach is motivated by prior work that uses Large Lan-
guage Models (LLMs) to recreate bug reports [22], test GUIs [36], 
and automate tasks for web interfaces [47]. To our knowledge, AX-
Nav is the frst work that uses LLMs for accessibility testing, or 
controlling accessibility services [51] and settings [12]. 

The contributions of this work are: 

• A formative study with 6 professional QA and accessibility 
testers revealing motivation and design considerations for 
a system to support accessibility testing through natural 
language instruction-based manual tests. 

• A novel system, AXNav, that converts manual accessibility 
test instructions into replayable, navigable videos by using 
a large language model and a pixel-based UI element de-
tection model. The system helps testers pinpoint potential 
issues (e.g., non-increasing text, loops) with multiple types 
of accessibility features (e.g., Dynamic Text, VoiceOver) and 
replays tasks through accessibility services to enable testers 
to visualize and hear the task as a user of the accessibility 
service might perform it. 

• A user study with 10 professional QA and accessibility testers 
revealing key insights into how accessibility testers might 
use natural language-based automation within their manual 
testing workfow. 

2 RELATED WORK 
AXNav is most closely related to works that use text instructions as 
an input for UI automation, which is useful beyond accessibility use 
cases. In this work, we specifcally target UI navigation from natural 
language for accessibility testing, thus we also review accessibility 
testing tools and approaches. 

2.1 Large Language Models and UI interaction 
A key contribution of AXNav is its LLM-based planner that can 
navigate mobile apps to execute specifc tasks or arrive at particu-
lar views. Our multi-agent system architecture is loosely based on 
ResponsibleTA, which presents a framework for facilitating collabo-
ration between LLM agents for web UI navigation tasks [58]. Since 
AXNav is designed for testing rather than end-user automation, 
it removes some components (e.g., a system to mask user-specifc 
information), and combines other modules (e.g., AXNav combines 
evaluation and completeness verifcation, and AXNav proposes ac-
tions and feasibility in the same step). These changes signifcantly 
reduce the number of LLM turns taken, which lowers cost and 
reduces latency. 

Other UI navigation works for web and mobile apps have recently 
emerged. Wang et al. [52], describe prompting techniques to adapt 
LLMs for use with mobile UIs, and evaluate an LLM-based agent’s 
ability to predict the UI element that will perform an action on 
a given screen. AXNav’s UI navigation system builds upon this 
work by supporting more complex, multi-step tasks. Other works 
map from detailed, multi-step instructions to actions in mobile 
apps [22, 33, 49]. AutoDroid injects known interaction traces from 
random app crawls into an LLM prompt to help execute actions 
with an LLM agent [54]. AXNav can interpret a wide variety of 
instruction types, from highly specifc step-by-step instructions 
to unconstrained goals within an app (“add an item to the cart”), 
without relying on prior app knowledge. Furthermore, AXNav is 
able to modify its plan when the UI changes, if it encounters errors, 
or if the test instructions are incorrect. 

The emergence of LLM-based UI navigation systems has moti-
vated the need for more interaction datasets. Android in the Wild 
presents a large dataset of human demonstrations of tasks on mobile 



AXNav: Replaying Accessibility Tests from Natural Language CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

apps for evaluating LLM-based agents [41]. Other datasets, such as 
PixelHelp [33] and MoTiF [11] also collect mobile app instructions 
and steps. Unlike prior art, AXNav is designed to work on iOS apps, 
which can have diferent navigation fows and complexities than 
corresponding Android apps. 

Most importantly, none of the above works have been used to 
interact with accessibility features or support accessibility testing 
workfows. This is the core focus of AXNav’s contribution. 

2.2 Accessibility Testing Tools 
Despite the availability of accessibility guidelines and checklists 
[1, 10, 53], linters and scanners [2, 3, 27], and platforms for test 
automation [21, 55], developers and QA testers still often prefer to 
test their apps manually [34, 35]. Testing manually by using accessi-
bility services can reveal issues that cannot be revealed by scanners 
alone [37]. However, manual testing is costly and difcult to scale, 
leading to a variety of automated tools and testing frameworks 
being developed for accessibility testing [30]. 

There are a variety of tools to automatically check accessibil-
ity properties of apps [48]. Development-time [27] approaches 
use static analysis to examine code for potential issues. Run-time 
tools [2, 3, 21, 42] examine a running app to detect accessibility 
issues, which enables them to detect issues beyond static analysis; 
however, they still must be activated on each screen of the app to 
be tested. 

Another approach is to automatically crawl the app to detect 
issues [4, 15, 20, 46]; however, such tools currently adopt random 
exploration and thus may not fully cover or operate the UI as an end-
user might. These crawlers also do not operate through accessibility 
services which leaves them unable to evaluate whether navigation 
paths through the app are fully accessible. 

Latte [44] starts to bridge this gap by converting GUI tests for 
navigation fows into accessibility tests that operate using an acces-
sibility service; however, the majority of apps still lack GUI tests 
[34] and often require updating the code to new navigation fows 
when a UI changes [40]. Removing the requirements for GUI tests 
to be available, A11yPuppetry [45] lets developers record UI fows 
through their app and replay them using accessibility services (i.e., 
TalkBack [24]). This idea has also been explored in prior work for 
web applications [9]. However, a key challenge with record and 
replay approaches is that they can also be brittle and difcult to 
maintain as the UI evolves [32, 40]. By using LLMs, AXNav can 
interpret plain text instructions at diferent levels of granularity, 
and adapt them to new context when UIs change. 

AXNav was not intended to fully scan apps for accessibility 
issues. Rather, it was designed to fag a subset of potential issues 
during test replay to aid manual accessibility QA testers, based on 
feedback from formative interviews. Our system architecture could 
also be extended to run accessibility audits during each step of the 
replay, similar to accessibility app crawlers [20, 46]; however, in 
this work we focus on navigation and replay through accessibility 
services and not on holistic reporting of accessibility issues. 

3 FORMATIVE INTERVIEWS 
To better understand the challenges and benefts of manual acces-
sibility testing and elicit requirements for AXNav, we recruited 

iOS: Media App: Dynamic Text in Search Tab


1. In Settings > Accessibility > Display & Text Size, enable larger text and set to maximum size

2. Launch Media App 

3. Verify all text (titles, headers, etc.) font size has adjusted consistently

4. Set text size to minimum and repeat step 3

5. Reset text size to default and verify all text returns to normal

Title: iOS: VoiceOver: Search for a Show


1. Go to Settings > Accessibility > VoiceOver, and enable VoiceOver (VO)

2. Launch the Media app

3. Search for a show and verify that everything works as expected and there are accurate labels

4. Turn off VO and verify that searching for a show works as expected

iOS: Media App: Button Shapes across app


Expected Result: When Testing button shapes- we want to make sure that all text (not emojis 

or glyphs) get underlined if they are NOT inside of a button shape already. If the text is already 
within a button shape, it is a bug! (We see this bug frequently)

1

2

3

Figure 2: Three sample test cases for a video streaming media 
app testing the accessibility features of VoiceOver, Dynamic 
Type, and Button Shapes. Testing instructions typically con-
sist of a title containing the app and feature under test, and 
a set of manual test instructions in natural language. The 
tests may also contain expected result descriptions. Some 
tests have specifc, low-level instructions (1,2) and others 
give only a high-level instruction (3). 

six accessibility QA professionals through snowball recruiting at a 
large technology company. Participants spanned four product and 
services teams across four organizations, and had a minimum of 3 
years of professional experience in accessibility and QA testing of 
iOS mobile apps. We conducted 30-minute remote interviews with 
each participant. 

We divided our formative study into two parts. In the frst part, 
we asked participants about the challenges and benefts of manual 
accessibility testing, their cadence for performing manual tests, 
and whether and how they write testing instructions. We also 
asked them to describe the areas and features they tested and to 
demonstrate a manual test for an app and feature of their choice. 

From our domain knowledge and review of prior work, we hy-
pothesized that a signifcant portion of time spent testing was 
manually navigating to specifc screens in apps, and that a sys-
tem to automatically perform this navigation from existing manual 
test instructions would be useful. The second half of the formative 
study was designed to check this assumption and elicit features 
that would be useful for a system to help support manual testing. 
In this phase, we played a screen recording of an author manually 
performing an accessibility test from an internal database of ex-
isting tests (Figure 2.1—“Search for a Show” in a media app using 
VoiceOver). We asked participants to imagine a system replaying 
the test instructions on the device and instructed them to think 
aloud while watching the screen recording, noting any features an 
automated tool should support. We asked about the benefts and 
drawbacks of this functionality and how it might be used in testing 
workfows, if at all. We include the full set of formative interview 
questions in our supplementary materials. 
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3.1 Challenges & Benefts of Manual Testing 
Participants noted a key beneft of manual testing is to experience 
the feature as an end user might (P2-P5). One participant, P3, being 
a VoiceOver user, mentioned this enables them to more realistically 
test the feature as it is meant to be used: “the advantages are that 
we can test literally, from the user perspective myself, and a num-
ber of my teammates are users of the features because of various 
accessibility needs that we have. So we are the foremost experts in 
the functionality of those particular tests and what the expected 
results would be.” (P3) 

Participants from three teams brought up challenges, including 
an overwhelming scope of features and scenarios, leaving them to 
target only a few key features and tasks for testing (P2, P4-P6). P5 
stated: “It’s not like necessarily difcult. It is just like, repetitive 
and kind of boring and the scope is so big a lot of times like, if 
you’re looking at the <App Name Anonymized> app, there’s so 
many pages and so many views and so many buttons and diferent 
types of elements and everything. That is overwhelming and you 
feel you’re going to miss something”. 

Writing manual tests was also noted as a challenge by partici-
pants from three teams, who write down or have existing test suites 
of manual instructions (P3-P6). Participants noted it was easy for 
those tests to become outdated when apps are updated, challenging 
less experienced QA testers’ ability to interpret and follow test 
instructions (P3, P4). Finding the right time for accessibility testing 
was also mentioned by four participants, as they worked with apps 
that are frequently updated across various product milestones (P3-
P6). Two participants also mentioned trying to develop automated 
tests in their work, which they described as easily breaking and not 
covering all possible scenarios (P5, P6). 

3.2 Testing Process 
All participants took part in accessibility testing at various times 
throughout the product lifecycle. They tested annually as new 
features were added, or on regular release cycles of app interfaces. 
The participants’ daily work consists of manually performing tests 
for accessibility features (e.g., VoiceOver, Dynamic Type) across 
various products, or additionally writing accessibility frameworks 
and automation code. 

To test purely visual accessibility features, the participants typi-
cally toggle on the feature under test and validate that the app’s UI 
renders or behaves correctly based on the setting. For accessibility 
services tests (e.g., VoiceOver), they typically enable the feature, 
and then either navigate the app to perform a task using the feature 
or navigate to a specifc screen to validate the navigation order or 
another behavior of the feature. 

3.3 Granularity and Availability of Manual 
Accessibility Test Instructions 

Manual testing instructions are an extremely common artifact 
within our organization, existing in both manual test databases and 
bug-tracking tools. One team we interviewed (two participants) 
noted they own a large database of manual instructions for UI tests 
(P3, P4), but none of these instructions are specifcally for accessibil-
ity testing. They also noted that they frequently write down manual 
instructions for accessibility features, or “repro steps”, when they 

are fling bugs. In their work, they often work with engineers who 
may lack familiarity with the accessibility feature under test, so 
they try to make instructions as specifc as possible. 

For another two participants on a diferent team, their accessibil-
ity testing instructions primarily consisted of a large regression test 
suite across ten apps with 300 individual test cases they perform 
annually (P5, P6). Among these tests, some had concrete low-level 
steps, but many were abstract, high-level, and assumed the QA 
tester has a high level of expertise on both the app and the acces-
sibility feature to be tested. Figure 2 contains three example test 
cases for a video streaming app for the accessibility features Voice 
Over, Dynamic Type, and Button Shapes. Each test case typically 
has a title containing the platform, feature, and app to be tested, 
but only some test cases have step by step instructions, and only 
some test cases have an “Expected Result” specifed. 

3.4 Features in a Natural Language-Based 
Accessibility Testing Tool 

In the second part of our formative study, we elicited features by 
having participants imagine a system replaying manual testing 
instructions on an iPhone, while watching a screen recording of 
one of the authors performing a manual test. The video was a 
screen recording only and had no additional features. We then 
asked participants what features such a system should support in 
the context of accessibility testing. Here we summarize the key 
features revealed by both this task and part one of our interviews 
that we incorporated into the design of AXNav. 

3.4.1 F0: Natural Language Interpretation and Replay. Our QA 
testers liked to observe the behavior of the interactions as they 
were performing manual testing. They wished for more automa-
tion in their workfows, but did not have time to spend writing 
and updating automated tests. They also often already had large 
databases of manual testing instructions available. Thus one goal 
of our work was to enable testers to use their existing testing instruc-
tions, written at multiple levels of abstraction, as input to a system 
that can interpret those instructions and replay them on a device. We 
hypothesized such a system could complement testers’ workfows 
through automation without requiring writing and updating fully 
automated tests. 

3.4.2 F1: Qickly Navigate and Visualize Executed Steps. To provide 
QA testers with the beneft of observing tests as an end user, we 
record videos of each test for the tester to examine. While watching 
the video demonstration of the test, multiple participants requested 
to review portions of the video multiple times to better understand 
what action the system took and to further examine screens for 
potential bugs. To improve video navigation, we add chapter labels 
to the video that indicate either the action taken or fag potential 
issues. We also annotate system actions on the impacted video 
frames with a pink ‘+’ cursor. The chapters also allow users to skip 
back and repeat watching key segments quickly (Figure 1.f). 

We also received feedback from two participants during our 
interviews requesting the system to let them replay the instructions 
on a live local device and take control during various parts of the 
test (P3, P4). This would be a more useful interaction particularly 
for P3, a VoiceOver user, as they were unable to interact with the 
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UI in the video format. Due to current constraints with our system 
architecture, we did not provide this in AXNav, but will explore 
the feasibility of supporting this along with providing a video for 
post-replay review. 

3.4.3 F2: Flag Potential Issues. Four participants mentioned that 
they would like the system to fag potential issues and report fail-
ures. When asked what specifc issues to fag would be most help-
ful, participants mentioned both visual issues like dynamic type 
resizing, and accessibility feature navigation issues (e.g., wrong 
navigation order, elements missing a label or not available for nav-
igation). Participants noted that if a system could direct them to 
target their testing towards any potential issues, that would save 
time in bug fling: “If it could detect the issue and write it down 
or like, ..., that would be helpful so that I can write bugs or maybe 
bug can be automated.” (P6) Based on this feedback, we developed 
custom heuristics in AXNav to fag a small subset of accessibility 
issues to evaluate the feasibility and potential impact of this idea. 
We use the video output to fag issues by adding a chapter label at 
the location of the potential issue in the video. 

Some participants also requested the system to save screenshots 
in addition to the video output (F1) so that when they fnd issues, 
they can directly upload the screenshots to a bug tracking tool – 
“if your product did that, I think that would be a huge time saver 
because most of my time is taking screenshots and clipping” (P5). 
Screenshots also enable AXNav to fag potential visual accessibility 
issues through postprocessing. 

3.4.4 F3: Realistic VoiceOver Navigation and Captioning. In the 
video recording of the manual test, we showed participants, we 
activated the UI elements for each step directly like a sighted user 
might, rather than swiping through elements on a screen to fnd UI 
elements as a non-sighted user might. Several participants noticed 
this, and noted that the system should replay the test to be as similar 
as possible to how a user of the accessibility feature performs the task 
(P2, P3-P5). Additionally, our video also included the VoiceOver 
captions panel for this task, which three participants mentioned 
was an important feature to include in our fnal system. 

3.4.5 F4: Perform Tests With and Without Accessibility Features. 
Our participants shared many manual test scripts that instructed 
testers to perform tests with and without the accessibility feature 
under test toggled on. For example, the “Search for a Show” test in 
Figure 2 instructs the tester to frst turn on VoiceOver to perform 
the test, and to perform the same test after turning of VoiceOver. 
As participants noted, testing with the feature turned on and of 
helps QA testers verify if the system returns to the correct state 
after turning of the feature under test. Thus, AXNav repeats the 
navigation steps twice for most tests, frst replaying the test with 
the feature on and then replaying the test with the feature of. 

4 AXNAV SYSTEM 
Based on our formative interviews with QA testers, we designed and 
built AXNav, a system that interprets an accessibility test authored 
in natural language, and replays the test instructions on a mobile 
device while manipulating the accessibility feature to be tested 
(F0; subsubsection 3.4.1). AXNav interprets plain text instructions, 
which can be authored at varying levels of specifcity, to navigate 

to a desired view to be tested. It then outputs a chaptered video that 
a tester can navigate and replay (F1; subsubsection 3.4.2) annotated 
with heuristics that fag potential issues in the app (F2; subsub-
section 3.4.3). AXNav currently supports controlling and fagging 
issues with four accessibility features: VoiceOver, a gesture-based 
screen reader [51]; Dynamic Type, which increases text size; Bold 
Text, which increases text weight; and Button Shapes, which en-
sures clickable elements are distinguishable without color, typically 
by adding an underline or button background (Figure 1.d). We se-
lected these features since, based on our interviews, they seemed to 
provide good coverage of real-world testing needs across diferent 
modalities. AXNav could be extended to other accessibility and 
device features in the future. For each user-provided test, AXNav 
executes the test on a specifed app both with and without the 
specifed assistive feature activated for comparison (F4; subsubsec-
tion 3.4.5). 

AXNav consists of three main components that are used to pre-
pare for, execute, and export test results: (1) Device Allocation and 
Control, (2) Test Planning and Execution, and (3) Test Results Ex-
port. These components work together to provision and stage a 
cloud iOS device for testing, automatically navigate through an app 
running on the cloud device to execute the test, and collect and 
process test results. 

4.1 Device Allocation and Control 
Before executing a test, AXNav provisions a remote cloud iOS 
device and prepares it according to the parameters it extracts from 
the test instructions. AXNav extracts the name of the app to be 
tested and the assistive technology to use in the test (e.g., Dynamic 
Type) from the instructions to automatically install the app and 
select the assistive feature to test. Instructions typically take the 
form of those shown in Figure 2. 

During setup, AXNav installs a custom application that provides 
an interface to operating system APIs that silences several system 
notifcations, controls screen recording, and interacts with assistive 
technologies. AXNav uses an operating system API to toggle and 
confgure the specifc accessibility feature under test (e.g., Dynamic 
Type size). If the test is for VoiceOver, AXNav activates the caption 
panel (F3; subsubsection 3.4.4) and sets the speaking rate to 0.25 
to accommodate for speeding up the exported video in the Test 
Results Export step. 

When the device is ready for the test to be executed, AXNav 
launches the app under test, and begins screen recording. The test 
execution engine can interact with the cloud device over a remote 
desktop connection and the accessibility-specifc features supported 
by the custom application (see subsubsection 4.2.4). 

4.1.1 Accessibility Feature Control and Replay. AXNav uses dif-
ferent sequences to test supported accessibility features. For tests 
with Dynamic Type, the system launches the target application, 
increases the Dynamic Type Size, navigates to the target screen 
specifed in the test, takes a screenshot, kills the application, and 
repeats this process for all four Dynamic Type sizes and, fnally, 
without Dynamic Type on. This enables testers to observe the cor-
responding changes on the screen as the size is increased. 

For Bold Text and Button Shapes, AXNav navigates to the target 
screen specifed in the test with and without the feature enabled, and 
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(a) 
Preparatory 

Provided a goal by a user, formulate a step-by-step plan that accomplishes their goal with the 
current app. UI elements on the user's current screen are provided [...]

ID: 0 Label: Text, Text: Edit, BoundingBox from (38, 159) to (171, 252) 
ID: 1 Label: Icon (Type: add), BoundingBox from (1138, 157) to (1239, 255) 

ID: 2 Label: Text, Text: World Clock, BoundingBox from (37, 277) to (661, 411) 
ID: 3 Label: Button, Text: Today, -7HRS, Cupertino, 1:39PM, BoundingBox from (0, 427) to (1284, 721) 
ID: 4 Label: Button, Text: Today, - 4HRS, New York, 4:39PM, BoundingBox from (0, 717) to (1284, 1007) 

ID: 5 Label: Tab, Text: World Clock, BoundingBox from (0, 2542) to (346, 2692) 
ID: 6 Label: Tab, Text: Alarm, BoundingBox from (346, 2542) to (624, 2692) 

ID: 7 Label: Tab, Text: Stopwatch, BoundingBox from (624, 2542) to (979, 2692) 
ID: 8 Label: Tab, Text: Timer, BoundingBox from (979, 2542) to (1267, 2692)

Start the stopwatch using VoiceOver

1. The user is currently in the 'World Clock' tab. Tap on the 'Stopwatch' tab. 
2. Tap on the 'Start' button. The stopwatch should start running.

1. {'action': {'type': 'tap', 'element_id': 7}}  # Stopwatch tab 
2. {'action': {'type': 'tap', 'element_id': 2}}  # Start button

(e) 
Representing 
UI Elements

(b) 
Test Instructions

(d) 
Test Plan 
Proposal

(f) 
Take Actions 

From Plan Steps

1. Provision cloud iOS device 
2. Activate VoiceOver 
3. Launch the Clock app 

4. Once test is complete, kill Clock app and rerun tests with VoiceOver off

(c) 
Device Allocation 

and Control

1. The 'Stopwatch' tab is now active and the 'Start' button is visible. Success. 
2. The 'Start' button has changed to 'Stop', and the time has started to increase. Success.

(g) 
Evaluate 

Action Results

No VoiceOver loops detected. No missing UI elements detected.
(h) 

Test Results 
Export

Figure 3: Overview of intermediate steps used by AXNav to interpret natural language test instructions; provision and stage a 
device for testing; formulate and execute a plan to navigate the UI for the test; and export the test results. 

saves pairwise screenshots of each tested screen with the feature 
on and of for comparison. 

For VoiceOver, AXNav replays the instructions once with VoiceOver 
toggled on, and again with VoiceOver of. 

4.2 Test Planning and Execution 
AXNav uses an LLM-based UI navigation system that can trans-
late from natural language test instructions into a set of actionable 
steps, execute steps on a live device by calling APIs that interact 
with a device, and feed results back to improve the navigation plan 
(see Figure 4). We use OpenAI GPT-4 [38] in our implementation, 
but AXNav can be easily adapted to use other LLMs. Our system 
architecture is loosely inspired by ResponsibleTA [58], but elimi-
nates some elements (e.g., masking LLM inputs), and merges other 
elements (e.g., combining feasibility with actions). It consists of 
three LLM-based agents: the planner agent, the action agent, and 
the evaluation agent. To provide device state to the LLM agents, 
we use existing pixel-based machine learning models to recognize 

UI elements, text, and icons [14, 57]. AXNav formats detected UI 
elements as text strings to be ingested by the LLM, described in 
subsubsection 4.2.1. To interact with the device, AXNav provides 
tools that the LLM invokes to send touch or keyboard input events 
and VoiceOver gestures. 

4.2.1 Test Plan Proposal. The planner agent is the heart of AXNav 
(Figure 4), and it formulates a tentative plan containing instructions 
to navigate to a desired view in an application from its current state. 
The planner agent takes as input the accessibility test instructions 
(Figure 3.b), the name of the app under test, and the formatted UI 
element detections from a screenshot of an iOS device. The planner 
agent’s prompt contains instructions to formulate a tentative plan 
(Figure 3.a; Figure 4, Tentative Plan) to accomplish the test goal 
with the current app and the set of actions that can be taken in 
a step. To adapt to changes in the UI or unexpected errors (e.g., 
permissions request dialogs), the prompt includes instructions to 
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Planner/
Replanner Tentative Plan

For each action

Action

Replan

Evaluation

Continue

Propose a step-by-step plan 
that meets the test’s goal

Step through 
the plan

Use tools to act on the 
UI (Tap/Swipe/Text)

Evaluate results of 
taking the action

Tools

Figure 4: Planning and replanning workfow of our LLM-
Based Multi-Agent Planner 

traverse backward through the app if an unexpected state is en-
countered, and to accept an imperfect plan if needed, since it can be 
revised later. The planner agent’s prompt also instructs the model 
to to provide reasonable search queries if the test does not specify 
them, based on the app name and the current context of the screen. 

The expected output of the planner agent is a JSON-formatted 
object that contains a list of steps. Each step contains a thought 
designed to facilitate Chain-of-Thought (CoT) reasoning [31] that 
answers how the step will help achieve the user’s goal; evaluation, 
which suggests criteria to determine task success; action, a brief, 
specifc description of an input to provide on a given screen (e.g., 
tap, swipe, enter text); and a status feld, which is initialized as 
“todo” and updated to “success” when a step is executed correctly. 
An illustrative plan is shown in Figure 3.d. 

4.2.2 Representing UI Elements to the Agents. AXNav describes 
the UI to the LLM as a list of UI elements in plain text, which each 
contains an incrementing integer as an id; the classifcation of the 
UI element (e.g., Icon, Toggle); text contained by the UI element, if 
any; and the coordinates of the bounding box around the element 
(Figure 3.e). For example, an element with ID 3 might appear as: (3) 
[Button (Clickable)] "Try It Free" (194, 1563) to (1042, 
1744). AXNav uses this simplifed list because it economizes on 
tokens, unlike prior approaches that format UI elements as JSON 
or HTML [22, 58]. 

AXNav infers the elements in a UI using the Screen Recognition 
model from Zhang et al. [57] to predict bounding boxes, labels, text 
content, and the clickability of UI elements from screenshot pixels 
of iOS devices. Using pixels to detect UI elements makes AXNav 
agnostic to the underlying UI framework [18]. AXNav groups and 
sorts detected elements in reading order, and fags an element if it 
is recognized as a top-left back button, using the postprocessing ap-
proaches from [57]. AXNav also detects the presence of a keyboard 
(to hint that a text feld is selected) by detecting the presence of 
single-character OCR results on the lower third of a screenshot. If 

AXNav detects a keyboard, it flters all UI elements detected on the 
keyboard, except for a submit button (“return”, “search”, “go”, etc.). 

4.2.3 Mapping from Plan Steps to Concrete Actions. For each step 
in the plan proposed by the planning prompt, AXNav implements 
an LLM-based “action agent” to map from the text instruction to a 
concrete action (Figure 4, Action) to take on a particular UI element 
(Figure 3.f), inspired by prior work [22, 33]. This agent performs 
several critical subtasks to navigate UIs in a single step: it identifes 
how to map a natural language instruction to the specifc context of 
a UI, evaluates the feasibility of the requested action, and produces 
arguments for a function call to execute the task. The action agent’s 
subtask-to-action prompt contains instructions to output a specifc 
action to take on a given screen, represented by the formatted UI 
detections. The available actions are: 

• Tap: Tap a UI element given its ID. The prompt instructs 
the agent that tapping an object that is inferred to be non-
clickable is acceptable if it is the only reasonable option on 
a screen. 

• Swipe: Swipe in a cardinal direction (up/down/left/right) 
from a specifed (x, y) coordinate. The system tells that agent 
that swiping can be used to scroll to view more options 
available on a screen if needed. 

• TextEntry: Tap a UI element given its ID and then enter a 
given text string by emulating keystrokes. The agent is told 
to come up with appropriate text if it is not provided. 

• Stop: Stop execution of the current step and prepare feed-
back for the replanner to update the plan as needed. The 
feedback must specify what information is needed in an 
updated plan. 

The output of the action agent is a JSON-formatted object that 
contains a thought to elicit CoT reasoning, relevant UI IDs, a 
list of UI elements the agent considers relevant (also to elicit CoT 
reasoning), and a single action, which specifes a function call in 
JSON to execute interactions on the device. 

4.2.4 Executing VoiceOver Actions. For action execution in VoiceOver, 
the system interacts with the device through VoiceOver’s accessibil-
ity service. We implement this in a custom application that provides 
an interface to a Swift API (built on top of XCTest [55]) that can 
trigger key VoiceOver gestures [51] for AXNav. These gestures 
execute VoiceOver gestures in the same way a user of VoiceOver 
would perform them (F3; subsubsection 3.4.4). Supported gestures 
are as follows: 

Right swipe through all elements (read-all). This command 
triggers the VoiceOver Right Swipe gesture multiple times to nav-
igate through all exposed elements on the screen, typically in a 
top-left to bottom-right ordering. Our system limits the number of 
elements navigated to 50 to save time and avoid getting stuck in 
loops or screens with infnite scroll. After right-swiping through 
the frst 50 elements, the system activates the frst tab, if it exists, 
and navigates through all tabs from left to right in the tab bar. 

Activate an element (activate-from-coordinates). This com-
mand issues VoiceOver’s Right Swipe and Double Tap gestures to 
locate and activate an on-screen element. In our formative inter-
views, our prototype video demonstrated the “Search for a Show” 
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task in VoiceOver by directly navigating to relevant UI elements 
using the VoiceOver Tap gesture followed by Double Tap. However, 
participants gave us feedback that they preferred the demonstra-
tion to be more similar to how a non-sighted user would fnd and 
activate a UI element, by using Right Swipe to navigate through 
UI elements to fnd the target UI element to activate, and then 
activating the element using Double Tap (F3; subsubsection 3.4.4). 
To confrm this, we observed a screen reader user performing the 
“Search for a Show” task, who followed a roughly similar pattern. 

activate-from-coordinates takes as input x and y coordi-
nates corresponding to the center of the UI detection bounding 
box to be activated; and the UI Type label from the UI detection 
model (e.g., Tab). If the UI Type is Tab, the system navigates the 
VoiceOver cursor directly to the leftmost tab element, uses the Right 
Swipe gesture to swipe to the frst tab containing the x and y coordi-
nates, and then activates it using Double Tap. If the UI Type is not 
Tab, the system navigates forward from the current element using 
Right Swipe until it reaches the last VoiceOver element or fnds an 
element containing x and y which it activates using Double Tap. If 
the system does not fnd the element, it navigates backward using 
Left Swipe until it reaches the frst VoiceOver element containing x 
and y and if so, activates it using Double Tap. If the system does not 
fnd an element containing the coordinates, the command returns 
without activating any element. 

Scroll (Up/Down/Left/Right) (scroll-<direction>). This com-
mand issues the VoiceOver Three Finger Swipe gesture, which scrolls 
the current screen in the given cardinal direction by one page. 

To prevent the VoiceOver caption panel from interfering with the 
UI detection model’s assessment of the state of the app, the system 
removes the caption panel from the formatted UI detections using a 
heuristic based on a fxed height from device dimensions. When the 
input test instructions specify to perform a task that requires navi-
gating through multiple UI elements and screens, the system trig-
gers VoiceOver navigation using activate-from-coordinates 
when the action agent instructs a TextEntry or Tap action. If the ac-
tion agent instructs the system to perform a Scroll action, the 
system calls the corresponding scroll-<direction> action in 
VoiceOver. If the instructions state to navigate to a specifc screen 
to verify the VoiceOver elements and navigation order, the system 
calls read-all once it reaches the fnal step of UI navigation, to 
swipe through all exposed elements on the screen. This enables 
testers to determine whether all elements within that screen are 
accessible by VoiceOver. 

4.2.5 Evaluation and Replanning. Once an action is executed on the 
device, AXNav implements a third LLM-based “evaluation agent” 
to evaluate the results of the taken action (Figure 4, Evaluation). 
An illustrative example of evaluation output is shown in Figure 3.g. 

AXNav prompts the evaluation agent with the test goal, the 
entire current tentative plan, the action JSON object (including 
the function call and “thought”), the UI detections of the screen 
before the action was taken, and UI detections of the screen after 
the action was taken. The prompt also includes evaluation hints 
designed to reduce navigation errors: if UI elements signifcantly 
change, the action likely succeeded; if the state of the current screen 
changes, but a new view is not opened, err on the side of the action 
succeeding; if the last action was a scroll or swipe, but the screen 

Figure 5: Examples of issues fagged by our heuristics for 
Button Shapes (left) and Dynamic Text (right). The Button 
Shapes heuristic fags the Collections row which has a button 
shape and also is underlined (a possible bug). The Dynamic 
Type heuristic fags several text elements with red boxes 
indicating the size has not increased with the DT size update 
(a possible bug). 

did not change, the action likely failed; if the target element is not 
visible, more scrolling may be required; and if the last action was to 
click on a text feld, the evaluation should be whether a keyboard 
is visible. 

The output of the evaluation agent is a JSON object that contains 
evaluation_criteria, to encourage CoT reasoning; a result of 
success, failure, or task completion; and an explanation, which 
the system feeds back into the Planner to revise the plan if the 
evaluation fails. 

If the evaluation result is positive, then execution proceeds with 
the action agent being prompted with the next step in the plan. If 
the evaluation result is negative, the planner agent is prompted 
to replan, which updates the tentative plan from the current step 
onwards. The planner agent’s replanning prompt is similar to the 
initial planning prompt, but includes the previous plan, the current 
step being executed, and information about the stop condition 
or evaluation error. The resulting JSON output contains a new 
tentative plan, revised from the current step onward. 

4.3 Test Heuristics 
AXNav can currently fag four types of potential accessibility is-
sues in the output video: VoiceOver navigation loops and missing 
elements, Dynamic Type text resizing failures, and Button Shapes 
failures (see Figure 5). 

4.3.1 VoiceOver loop detection and missing VoiceOver elements. 
Our system detects loops in VoiceOver navigation order during the 
activate-from-coordinates and read-all commands. To detect 
loops, the system maintains a list of all visited VoiceOver elements, 
and detects a looping bug if any element is revisited during the 
command. To enable the system to navigate the remaining task 
steps, the system attempts to break out of the loop by fnding the 
next VoiceOver element below the element where the looping was 
detected, navigating to it, and either continuing with read-all or 
activate-from-coordinates. 
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4.3.2 Missing VoiceOver elements. A typical accessibility error oc-
curs when an element detected by AXNav’s UI element detec-
tion algorithm cannot be navigated by VoiceOver. The system 
fags this issue when a VoiceOver element cannot be found during 
activate-from-coordinates. 

4.3.3 Dynamic Type. The Dynamic Type heuristic determines if 
text elements and their associated icons increase in size when the 
system-wide Dynamic Type size is increased. The heuristic takes 
two inputs: a screenshot of a view with a baseline text size, and 
another screenshot of the same view with a Dynamic Type size 
increased by one increment. 

The heuristic frst uses a UI element detection model [57] on each 
screenshot to recognize text elements and perform OCR [6]. The 
heuristic then uses fuzzy string matching with Levenshtein distance 
to fnd corresponding text elements between the two screenshots, 
with a partial similarity threshold set to 50%. The heuristic excludes 
elements without matches. For a text element to pass the heuris-
tic, its corresponding UI element must increase by an adjustable 
threshold set to 10% compared to the baseline screenshot. 

To identify icons paired with text elements, which should typi-
cally scale along with the text, the heuristic greedily matches icons 
to text elements in both screenshots by minimizing the distance be-
tween the icon’s right bounding box coordinate to the text element’s 
left coordinate. To remove icons that are not to the immediate left 
of the text, the heuristic excludes icons with a gap of more than half 
the icon’s width to the right text element or whose top and bottom 
are not bounded by the text element’s bounding box. The heuristic 
pairs icons with their adjacent text elements, and applies the same 
10% threshold in the bounding box area to pass the heuristic. 

4.3.4 Buton Shapes. The Button Shapes heuristic determines, for 
a given screenshot, whether clickable text outside of the clickable 
container is underlined. This heuristic takes a single screenshot of a 
view with Button Shapes activated. The heuristic uses a UI element 
detection model [57] to locate and classify elements in the UI, along 
with their predicted clickability. For every clickable container ele-
ment (Buttons and Tabs), the heuristic fags any contained element 
that is also underlined, which indicates a bug. For any uncontained 
text element predicted as clickable, the heuristic fags it if it is not 
underlined. 

The heuristic detects underlines in text elements by extracting 
the image patch of the text bounding box, binarizing the patch using 
Otsu’s method [39], edge-detecting the image with the Canny edge 
detector [13], and using the Hough Line transform [19] to detect 
any horizontal line that spans at least 75% of the width of the patch. 
If a text element is underlined when it should not be (or vice versa), 
it fails the heuristic. 

4.4 Output Video Generation 
AXNav’s output is a video of the test execution. Throughout the 
replay process, AXNav records the screen of the cloud device and 
logs timestamps of every action performed on the device, along 
with actions and activated UI elements. To improve the navigability 
of the video, AXNav adds named chapter markers that demarcate 
each step of the test being performed and each issue fagged by 
a heuristic (F1 & F2; subsubsection 3.4.2 & subsubsection 3.4.3). 

Regression Testing Apps Performance 

Dif. VO BT DT BS Success Partial Fail Acc. 
Easy 17 3 21 3 42 0 2 95.5% 
Hard 15 1 2 0 11 2 5 61.1% 
Total: 32 4 23 3 Overall Accuracy: 85.5% 
Table 1: Total evaluation test case counts for our Regression 
Testing Dataset for the AX features of VoiceOver (VO), Dy-
namic Type (DT), Bold Text (BT), and Button Shapes (BS), 
which we total for the difculty level of Easy and Hard re-
spectively. We report the performance of navigation replay 
as full success, partial success (some but not all steps com-
pleted), and failure, along with overall accuracy. 

Free Apps Performance 

Dif. VO BT DT BS Success Partial Fail Acc. 
Easy 0 4 2 1 5 1 0 83.3% 
Hard 5 1 3 4 9 3 2 64.3% 
Total: 5 5 5 5 Overall Accuracy: 70.0% 
Table 2: Total evaluation test case counts for our Free Apps 
Dataset for the AX features VoiceOver (VO), Dynamic Type 
(DT), Bold Text (BT), and Button Shapes (BS), which we total 
for each difculty level of Easy and Hard. We report the per-
formance of navigation replay as full success, partial success 
(some but not all steps completed), and failure, along with 
overall accuracy. 

Many video players include features to view all chapter markers by 
name and navigate directly to the start of a given chapter. To help 
communicate actions while watching, AXNav overlays markers on 
the video stream that label each action taken with crosshairs for tap 
actions and arrows indicating scroll direction. Potential accessibility 
issues from heuristic results are also overlaid on the video stream 
with colored bounding boxes in either orange or cyan. AXNav also 
speeds up the exported video by a factor of 2.5 to minimize pauses 
due to the latency of its LLM-based agents. 

5 TECHNICAL EVALUATION 
We conducted two evaluations of AXNav to determine the accuracy 
of our test replay. Few datasets currently exist in the literature for 
UI navigation tasks for mobile apps from natural language, and 
we are aware of no such datasets for iOS apps specifcally. Instead, 
we evaluated the system on a regression test suite used within our 
company to test a set of media apps, and created our own dataset 
from free apps within the Apple App Store. 

5.1 Regression Testing Dataset 
First, we evaluated the system on a large regression manual test 
suite. Some examples of this test suite are shown in Figure 2. From 
that test suite, we extracted 64 test cases from 5 apps testing the 
accessibility features that AXNav supports: VoiceOver, Dynamic 
Type, Button Shapes, and Bold Text. We discarded two of the tests 
due to our account lacking the necessary subscription to view the 
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screen(s) being tested. The fnal set contains 62 test cases. Note 
that this regression test suite is used for manual testing and is not 
constructed for the purpose of being used by any automated system. 
Many of the tests are very high level and assume the QA tester has 
a high level of expertise on the feature and the app under test. We 
chose to evaluate AXNav on this dataset since it is a representative 
set of real-world accessibility tests. 

5.2 Free Apps Dataset 
We also constructed a dataset of accessibility testing instructions 
for publicly available apps. We randomly selected apps from a 
public list of the 100 most popular free apps in the Apple App Store, 
ultimately selecting fve apps from diferent app categories. Then 
for each app, one researcher on our team drafted four manual tests, 
one for each of AXNav’s supported accessibility features, using 
the regression testing suite as an example. We validated that the 
tests were realistic by discussing them with an expert accessibility 
QA tester from the formative study. The fnal dataset consists of 20 
manual tests across fve apps and four accessibility features. 

5.3 Accuracy Results 
We evaluated the difculty of each test through a rubric based on 
prior work [26], which rates each type of instruction task into Easy 
or Hard categories for evaluation. 

• Easy regular expression-based retrieval task: These tests 
can be completed in a single step by matching the correct UI 
element with the correct action, and possibly scrolling on the 
resulting page. The role of the planner agent in completing 
these tests is minimal and in many cases, the test could be 
completed entirely by the action agent. 

• Hard structured problem-solving or open-loop plan-
ning task: These tests require the system to take multiple 
actions across multiple screens. That requires the planner 
agent to reason about the steps needed to complete the test 
and correct itself as needed as the test proceeds. It also re-
quires the action and evaluation agents to ensure multiple 
steps are completed successfully, beyond just the one step 
required for easy tasks. 

To group the tests into the above categories, two authors inde-
pendently rated each test and then met to discuss and resolve any 
diferences. Table 1 and Table 2 show the total counts for each level 
across the four supported accessibility feature categories and the 
two separate datasets. 

To repeat each test, we input the test instructions into the system, 
reset the phone’s current state to match the initial state specifed by 
the test, and then executed the test instructions on the device. Dur-
ing this process, we recorded all interactions between the system 
and the app. For both datasets, we report navigation replay success, 
which measures whether our system can follow the instructed steps 
successfully to reach the desired destination, and accessibility test 
success for whether the accessibility feature test succeeded. We also 
report navigation partial success, which indicates that AXNav re-
played one or more steps in the test but did not end up in the correct 
fnal state. We determined success based on our own manual evalu-
ation based on the expected behavior for each accessibility feature. 
To ensure consistency, two researchers independently scored the 

system’s performance on each test case and then met to discuss 
and resolve any diferences. 

For the regression testing dataset, our system successfully re-
played 95.5% of easy test cases, and 61.1% of hard test cases for 
an overall success rate of 85.5%. Table 1 summarizes these results. 
Within our organization’s apps, support for the supported acces-
sibility features is already high; the accessibility test success rate 
across these tests was 78%. We are also working with the owners of 
this regression testing dataset to report the accessibility test failures 
in our internal bug-tracking system. 

For the free apps dataset, our system successfully replayed 83.3% 
of easy test cases, and 64.3% of hard test cases for an overall suc-
cess rate of 70.0%. Table 2 summarizes these results. Support for 
the accessibility features of Bold Text, Dynamic Type, and Button 
Shapes unfortunately were low across the fve apps, resulting in an 
accessibility test success rate for these apps of only 15.0% across the 
20 test cases. This further motivates the potential impact of using 
systems like ours within the app development workfow. 

While the navigation replay success of our system is good for 
both datasets, our system fails to replay some tests. In some cases, 
the navigation replay fails because the test requires tapping on 
a certain item in a collection where only some items have the re-
quired condition (e.g., have a subscription available) but the planner 
agent typically suggests activating the frst item. In other cases, 
the planner agent cannot deduce enough knowledge about the app 
and predicts that key functionality for the replay does not exist 
in the app. In a few cases, key UI elements needed to be activated 
for the test that were located ofscreen and required scrolling to 
reach, and AXNav did not continue scrolling long enough to fnd 
them. Another challenge we have seen is that the planner agent 
sometimes is unable to determine when to stop and gets into an 
infnite loop. These are areas we hope to improve in future work. 

6 USER STUDY 
We presented our system in user study sessions with 10 professional 
accessibility testers. The goal of the user study is to understand 
how AXNav could assist accessibility testers in their workfows, 
specifcally, how well the system could replicate manual accessibil-
ity tests, aid testers in fnding accessibility issues, and be integrated 
into existing test workfow. 

6.1 Procedure 
We conducted 10 1-to-1 interview-based study sessions. During 
each session, we frst presented an overview of AXNav to the par-
ticipant. We then showed three videos generated by AXNav and 
the associated test instructions, in randomized order. Each video 
showed an accessibility test on iOS media applications for e-books, 
news stories, and podcasts, respectively, with diferent UI elements 
and layouts. The videos were selected from the set of videos used in 
section 5, based on their coverage of diferent accessibility features, 
including VoiceOver, Dynamic Type, and Button Shapes. Two of the 
tests shown in the videos were selected from those with the dif-
culty level of Easy, and one test with the difculty level of Hard. The 
tests shown in the videos represented real accessibility tests that 
our participants would perform, as they were selected from the set 
of test instructions authored and used by testers in the organization. 
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We chose to show videos to participants as they are the primary 
output produced by AXNav, ofering a realistic representation of 
interaction with our system. Furthermore, since AXNav is not a 
production system, it was not optimized for speed, and can take 
several minutes to an hour to produce a video. In practice, this is not 
a critical limitation, since many tests can be run in parallel, possibly 
overnight, and reviewed all at once following their completion. The 
specifc videos and associated test instructions that we used for the 
user studies are as follows: 

(1) VO: This video shows a test of a podcast application. The test 
instruction prompts the system to share an episode of a pod-
cast show through text message using Voice Over. (Difculty 
level Hard)1 

(2) DT: This video shows a test of Dynamic Text in a news appli-
cation. The test instruction prompts the system to increase 
the size of the text in four diferent fonts in a specifc tab of 
the application. (Difculty level Easy) 

(3) BS: This video shows a test of Button Shapes in an e-book 
application. The test instruction prompts the system to test 
the Button Shape feature across all the tabs in the application. 
(Difculty level Easy) 

All three videos contained some accessibility issues, which we 
prompted the participants to discover using the heuristics as part 
of the system. Furthermore, all videos deliberately contained errors 
and imperfect navigation to conservatively showcase the capabili-
ties of our system. Specifcally, the VO video shares a podcast itself 
instead of an episode, and some false positive errors are fagged in 
the DT and BS videos. We intentionally presented those imperfec-
tions to the participants to show the performance of the system 
conservatively, and to trigger a discussion of limitations and future 
directions. 

For each video, the researcher asked the participant to think 
aloud as they watched the video to 1) point out any accessibility 
issues related to the input test, and 2) point out any places where 
the test performed by the system could be improved. After each 
video, we interviewed each participant about how well the test 
in the video met their expectations, and how well the heuristics 
assisted them in fnding any accessibility issues. Besides qualitative 
questions, we also asked the participants to provide 5-point Likert 
scale ratings on how similar the tests in the videos are to their 
manual tests, and how useful the heuristics are for tests to identify 
accessibility bugs. Following the viewing of all three videos, we 
asked about the participants’ overall attitude toward the system, 
how they envisioned incorporating it into their workfow, and 
any areas they identifed for improvement. Additionally, we asked 
participants to provide 5-point Likert scale ratings assessing our 
system’s usefulness in its current form and with ideal performance 
within their workfow. 

6.2 Participants 
We recruited 10 participants who are full-time employees at a large 
technology company. All participants perform manual accessibility 
tests as part of their professional work, having professional titles 

1This video does not include any issue fagged by the system. In order to show partici-
pants what heuristics in VO look like, we presented a supplementary video of another 
VO case where the system fags a VoiceOver navigation loop in the chapters. 

of accessibility QA testers and accessibility engineers. We recruited 
participants via internal communication tools. In contrast to our 
formative study, all participants in this study were sighted and 
did not use screen readers. Two participants from our formative 
study, P5 and P6, also participated in this study. Since we did not 
collect information on the pronouns of our participants, we used 
the gender-neutral pronoun “they/them” to refer to all participants 
in our fndings. Interview questions and participant demographics 
are shared in Supplemental Materials. 

6.3 Data Collection and Analysis 
The data collected during the study includes audio and video record-
ings of the study sessions with the consent of the participants. We 
transcribed all the recordings into text format using an automated 
tool. The research team also took feld notes during the session 
and used the notes to guide the analysis. The length of the sessions 
ranged from 29 minutes to 49 minutes, with an average length of 
37 minutes. The interview with P9 only covered two videos (VO 
and BS) due to the participant’s availability. 

We performed a thematic analysis on the qualitative data from 
the user study [25]. Two authors of the paper frst individually 
coded all the transcripts, then presented the codes to each other 
and collaboratively and iteratively constructed an afnity diagram 
of quotes and codes together to develop themes. The following 
fndings section presents the resulting themes. We also reported 
the descriptive statistics of the data collected from the Likert scale 
rating questions, including the mean, standard deviation (SD) and 
sample size (N), to supplement our qualitative insights. 

6.4 Findings 
6.4.1 Performance of the Automatic Test Navigation. 

Automatic test navigation replicates manual test. Participants 
generally agreed that the system navigated applications in a similar 
path as they would conduct tests manually, especially in the BS 
and VO test cases. For VO, Participants rated 4.60 (SD = 0.52, N 
= 10) on average in the similarity regarding the navigation path 
between human testers and the AI (between “very good match” and 
“extremely good match” with their manual testing procedures). P3 
was impressed by the system’s ability to execute the test: “my mind 
is blown that it was able to fnd that [shared button] buried within 
that actions menu.” Similarly, in the BS test case, Participants rated 
4.35 (SD = 0.75, N = 10) on average. In P9’s opinion, the system’s 
heuristics might outperform most human testers in BS, since it 
could be subjective for a human tester to determine what consists 
of a button shape. Participants also reacted positively to the chapter 
feature, as it enabled efcient navigation through the video. 

Diferences in system and human approaches. Some of the ap-
proaches the system provided were diferent from what human 
testers would do. Compared to BS and VO, the system’s perfor-
mance in DT received 3.39 (SD = 0.78, N = 9) on average, a relatively 
lower rating that was between “moderately good match” and “good 
match” with manual testing procedures. A main diference is that 
the system always relaunches the application between the tests of 
diferent text sizes, while human testers tend to use the control cen-
ter to adjust text sizes within the application without relaunching 
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it in order to mimic what a real user would do. In fact, participants 
recognized a potential beneft of AXNav’s approach, as it added an 
additional layer of testing: “I really like that launches the app in 
between changing the text size, because I think it’s a separate class 
of bug, whether or not, it responds to a change in text size versus 
having the text size there initially.” (P8) Similarly, P9 found in the 
VO example that the system waited for spoken output, which was 
not something that a human tester would typically do, but might 
be benefcial for more thorough tests. 

At the same time, participants also suggested that future versions 
of the system could enable exploratory and alternative navigation, 
as well as more in-depth tests of the UI structure. For example, for 
BS, participants mentioned that they would have explored more 
nested content in the application to ensure the Button Shape feature 
works for all elements (P2, P6). For VO, participants wished the 
system could support alternative, non-linear pathways that VO 
users could go through (P7) and navigation using both swiping and 
tapping gestures (P4). Another common request is the ability to 
scroll through the screen of an application when testing display 
features like DT and BS. 

Reaction to navigation errors. The VO video contains a slight 
error in the navigation: the navigation shares a show instead of 
sharing an episode. Only 2 out of 10 participants (P2 and P5) were 
able to identify this navigation error. Most participants ignored the 
error, potentially due to over-reliance on the automatic navigation, 
as P2 said, “it worked well enough that I almost kind of let that slip. 
I needed to watch this video twice. Maybe I got over-reliant on [it].” 
To address this error, P2 elaborated on how they would re-write 
the test instruction so that the agent could potentially correct the 
mistake: “I would have [written], like, navigate to an episode, click 
the dot dot dot menu... I would suspect that this model would have 
done a better job fnding the actual episode...” P5, instead, described 
how they would navigate the application themselves based on the 
instruction: “I would defnitely do it the same route as it did through 
the more button, [but] instead of a certain episode, I would just 
switch it to show.” 

6.4.2 Identifying Accessibility Issues with Automatic Navigation. For 
all three cases of VO, BS, and DT, all participants spotted at least 
one accessibility issue, and agreed that the issues they discovered 
were signifcant enough to be fled in the internal bug reporting 
system within their company. 

Heuristics aid discovery of issues. Overall, participants agreed 
that the heuristics provided by the system assisted them in fnding 
the issues. For VO, BS, and DT respectively, participants on average 
rated 4.06 (SD = 1.38, N = 9) (between “useful” and “very useful”), 
4.75 (SD = 0.43, N = 10), and 3.67 (SD = 1.09, N = 9) (between 
“moderately useful” and “useful”) on the usefulness of the heuristics. 
Specifcally, the potential issues fagged in the chapters allowed 
participants to navigate to where the issue was and review it with 
greater attention. The heuristics in particular helped direct testers’ 
attention to the potential issues, which might otherwise be too 
subtle to discover: “Watching it in a video, as opposed to actually 
interacting with it, I think it is easier to potentially miss things... 
So, having some sort of automatic detection to surface things [is 
good].” (P8) Even though they sometimes resulted in false positives, 

participants appreciated the heuristics providing an extra layer 
of caution, as P10 said, “I actively like the red [annotation boxes 
around potential issues] because I think the red is like ‘take a look 
at this’ and then even if it’s not necessarily an issue, that’s not 
hurtful.” 

Risks of over-reliance on heuristics. Participants expressed the 
concern of over-reliance on the heuristics provided by the system. In 
some sessions of our study, although participants found issues that 
were not marked by the heuristics, they were worried that those 
false negatives might bias testers: “if things are marked as green, 
and maybe there actually is an issue in there, maybe that would 
dissuade somebody from looking there.” (P10) This could infuence 
testers of diferent experience levels diferently. An experienced 
tester might rely on their expertise to fnd issues, while a novice 
tester might over-rely on the suggested bugs (or non-bugs) made by 
the system. As P8 explained: “If somebody is kind of experienced 
with large text testing, they kind of know what to look for... If it’s an 
inexperienced tester, they might not know that the false positives 
are false positives and might fle bugs.” (P8) 

A mechanism to explain how the heuristics were generated and 
applied to the test cases might help with the issue of over-reliance. 
For example, P7 imagined it to be a series of “human-readable 
strings, like what it actually found... human-readable descriptions 
of what the error is in addition to seeing the boxes.” Other sugges-
tions focus on making the heuristics more digestible for the testers. 
Currently, we show the heuristics as screenshots with annotations 
separate from the videos. Participants suggested it would be easier 
to comprehend the heuristics if they were encoded in the video 
and separated from regular chapters (P6), and only annotated the 
potential issues (P1). P7 brought up the idea to include a dashboard 
or summary mechanism in the system, so that a tester “instead of 
just having a scrub through this video,” could see “a summary of 
the errors as well.” 

6.4.3 Integration in Accessibility Testing Workflow. Overall, partici-
pants reacted positively to our system. Participants rated 4.70 (SD 
= 0.48, N = 10) (between “useful” and “very useful”) on average for 
how useful the system is in their existing workfow if it performs 
extremely well, and 3.95 (SD = 0.96, N = 10) (between “moderately 
useful” and “useful”) on average to the system in its current form. 
Participants expressed excitement about the potential of integrating 
the system and bringing automation to their workfow. For instance, 
when asked for a rating on the overall usefulness of the system, P3 
answered: “[I will rate] it like a 5 million... Even with the current 
limitations, it is very useful... just being able to feed it some real 
simple steps and have it do anything at all is massively powerful.” 
The next sections unpack a range of ways that AXNav might be 
integrated into existing test workfows. 

Automating test planning. A compelling use case for AXNav is 
to automate the planning and setup of the test, which, according to 
our participants, is a time-consuming part of accessibility testing as 
it can involve an excessive amount of manual work to “go through 
and fnd all of the labels to tap through” (P3). The step-by-step 
executable test plan generated from natural language from our 
system can reduce the amount of tedious work: “rather than having 
to hard code navigation logic, it seems that this is able to determine 
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those pathways for you... I think this idea is really awesome and 
would defnitely save a lot of hours of not having to hard code the 
setup steps to go through a workfow with VoiceOver.” (P4) P4 also 
envisioned using the system as a test authoring tool, which can 
generate templates that can be run daily. 

Complementing manual tests. Participants found the system help-
ful in reducing workload and saving time in running tests. Some 
participants would like to embrace the automation provided by the 
system, keeping the system running a large scale of tests in the 
background while the team could focus on more important tasks: 
“you can run it in an automated fashion. You don’t need to be there. 
You can run it overnight. You can run it continually without scaling 
up some more people” (P7). As P8 imagined, “this could run on each 
new build [of the software], and then what all the QA engineer has 
to do is potentially a review about an hour’s worth of videos that 
were generated by the system, potentially automatically fagging 
issues.” The system can also provide consistency and standardiza-
tion in tests, which “ensure[s] that everything is run the same way 
every time.” (P8) 

At the same time, some participants are more cautious about 
automation and would like to use the system as a supplement to 
their manual work. P4 believed that even with the fagged issues, 
they would still pay attention to the system-generated videos to a 
degree similar to how they would test them manually. P1 imagined 
that they would still test manually, but would use the video as 
validation of their tests “to see if it could catch things that I couldn’t 
catch.” (P1) Some also imagined handing lower-risk tests, such as 
testing Button Shapes, to the system, while using the time saved 
by the system to manually and carefully test higher-risk tests that 
will be a regulatory blocker. (P2) 

Aiding downstream bug reporting. The videos generated by the 
system can also facilitate bug reporting in the downstream pipeline. 
Participants agreed that the video along with the chapters gener-
ated by the system could be used to triage any accessibility issues 
that they would report to the engineering teams. In their current 
practice, testers would sometimes include screenshots or screen 
recording video clips to demonstrate the discovered issue. Our sys-
tem prepared a navigable video automatically, streamlining this 
process: “I thought to be able to jump to specifcally when the issue 
is and scrub a couple of seconds back or a couple seconds forward 
is super useful for engineering.” (P7) 

Educating novices about accessibility testing. The system can also 
serve as an educational tool for those who are new to accessibility 
tests. The system can not only help new QA professionals, but 
also developers from under-resourced teams where there are no 
dedicated QA teams or pipelines. For example, P2 found the videos 
and heuristics helpful in terms of demonstrating certain accessibility 
bugs that people should be looking for: “This will be very useful 
for some of the folks that never do accessibility testing and [for] 
they [to] have a context or starting point for even knowing what 
a VoiceOver bug is.” (P2) In a way, our system has the potential 
to demonstrate and raise awareness of accessibility issues among 
broader developer communities, even for those who do not have 
QA resources. 

7 DISCUSSION 
Accessibility QA testing is still by-and-large a manual efort and 
there are benefts to not leaving such testing up to full automa-
tion [37]. The majority of QA testers we interviewed desired more 
automation to free up time for more complex testing. However, 
they lack the time and resources to efectively use existing automa-
tion methods. With AXNav, a key goal is to use testers’ existing 
metadata (e.g., databases of manual instructions) and build a tool 
to complement existing workfows. Our user study indicates that 
AXNav, even in its current form, can be useful in their workfows. 
AXNav also serves as an initial exploration into using recent ad-
vances in LLMs and UI navigation in accessibility testing workfows, 
which other systems can build upon. In this section, we discuss 
some limitations of our evaluation and the AXNav system that we 
plan to address in future work, and potential extensions of AXNav 
beyond accessibility testing workfows. 

7.1 Diferences between automated navigation 
and manual testing 

AXNav employs one workfow specifcally for VoiceOver tests, 
where the system uses forward swipes until fnding a target element 
before activating it. As shown in the user study, this may not refect 
how a VoiceOver user might navigate the task as the user may have 
prior knowledge of the app structure. This would enable users to 
skip around to various parts of the screen to activate the desired 
element. While sometimes such diferences can be complementary 
test strategies, future versions of the system could explore how to 
simulate alternative patterns of interactions. 

7.2 Improving navigation performance 
While AXNav achieves reasonable test replay accuracy, it can en-
counter errors arising from a lack of sufcient knowledge about 
apps or understanding when to stop (see section 5). We expect 
that improvements in modeling (i.e., by fne-tuning a model on 
successful navigation paths or integrating existing app knowledge 
into prompts [54]) can improve navigation performance in future 
versions of AXNav. Other approaches, such as using multimodal 
models [28], could be considered for future iterations. 

7.3 Mitigating errors and over-reliance 
Like all machine learning and heuristic-based systems, AXNav 
is not expected to always produce perfect output. However, it is 
important to mitigate the risk of these errors on QA testers. Prior 
works have shown there is a risk of over-reliance on AI systems 
since users can view the AI as an authority and be reluctant to 
challenge it [7, 16]. This is also the case for the navigation and 
heuristics of AXNav. For example, only 2 out of 10 user study 
participants were able to spot the navigation error in the VoiceOver 
example (see section 6.4.1). While evaluating the correctness of 
LLM-based systems remains an active area of research [29], there 
are additional techniques that could be considered for future work 
to enable AXNav to report whether it executed a navigation task 
correctly. For example, the navigation path itself could be evaluated 
through heuristics, another LLM, or by using existing knowledge of 
apps. Another way to mitigate over-reliance in future work would 
be to provide transparency signals, such as confdence scores and 
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textual explanations of how the predictions were made, echoing 
design guidelines on transparency and explainability for human-AI 
collaboration [5]. 

7.4 Limitations in the User study 
Our user study had participants watch and comment on videos 
generated by AXNav. Our study design mimicked how accessibility 
testers would interact with AXNav in their actual workfows (i.e., 
reviewing videos generated by an automatic system and spotting 
accessibility issues, as elaborated in section 6.4.3), but this design 
has some limitations. First, we only showed the same set of 3 videos 
to all the participants. Although the set of videos covers diferent 
types of accessibility tests, participants’ feedback could be biased by 
this limited set of examples. Second, we only showed users videos 
where navigation mostly worked to probe how they would use the 
system in their workfow. We did not show examples where the 
replay failed, and therefore were not able to collect user feedback 
on failed replay and how it would be handled. Third, in order to 
keep user study sessions short, the participants did not directly 
write their own tests and generate videos using the tool themselves. 
In future work, we plan to deploy AXNav in a longitudinal study so 
that we can better understand how QA testers instruct the system 
and interact with its output. 

7.5 Accessibility of AXNav 
One key limitation of AXNav currently is its output video format 
which is not by default accessible to screen reader users. People 
with disabilities are commonly employed in accessibility testing 
such as non-sighted screen reader testers. AXNav should make the 
video format accessible by ensuring all visual content is described – 
such as heuristic boxes, screen changes, and chapter annotations. 
Non-sighted users may also fnd other output formats more useful. 
The screen reader user in our formative study requested AXNav 
replay test cases live on a local device to enable them to take control, 
which is feasible and something we plan to do in future work. Lastly, 
future versions of AXNav should be accessible to testers beyond 
screen reader use cases (e.g., testers with motor impairments). 

7.6 Accessibility feature support and 
generalizability 

Our studies uncovered the need to support testing additional ac-
cessibility features beyond the four that AXNav supports. Future 
versions of AXNav can support more navigational accessibility 
services (e.g., Voice Control) and other accessibility settings (e.g., 
display features such as contrast adjustment and motion reduction) 
provided the device’s operating system provides APIs to control 
those features. AXNav currently surfaces some potential accessibil-
ity issues through its heuristics (e.g., Dynamic Type resizing issues); 
however, these do not cover all accessibility issues we could surface. 
Future versions of AXNav could incorporate existing accessibility 
inspection tools similar to Groundhog [46] to report issues such 
as missing UI element descriptions or minimum target sizes. We 
could also add a dashboard to summarize the issues found during 
AXNav’s replay, as study participants proposed. AXNav could also 

consider focused testing for specifc accessibility needs. For exam-
ple, if a test is for users with motor impairments, issues like target 
size would be important to surface. 

Lastly, we have only built AXNav to work with the iOS operating 
system. However, the system architecture and workfow should be 
extensible to other platforms where provided APIs are available to 
control the accessibility features under test. A body of work has 
explored general UI navigation in other platforms [22, 33, 49, 54]. 

7.7 More applications of the AXNav system 
We have so far evaluated AXNav for QA testing, but there are many 
opportunities beyond this as indicated by our user study and other 
work in this area. One that we would like to explore is using this 
system as a tool to help novice developers better understand the 
behaviors of accessibility features and how they should be tested 
by generating realistic simulations of behavior on their own apps. 
Additionally, natural language instructions are used in manual 
UI testing, bug reports, and reproduction steps [22], and natural 
language automation systems may beneft from the techniques we 
present in this paper to reconstruct these types of tests. These are 
examples of use cases we hope to explore in future work. 

8 CONCLUSION 
In this paper, we presented a system to support accessibility test 
interpretation and replay through natural language instructions. 
Our system achieves good technical success in replaying realistic 
manual test instructions, achieving 70% and 85% navigation replay 
success. We evaluated our system with 10 professional accessibil-
ity testers who would fnd the system very useful in their work 
and revealed a number of promising future opportunities and in-
sights into how we can leverage LLM-based task automation within 
accessibility testing. 
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