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ABSTRACT viewed a total of 1,980 different Uls, comprising 495 Uls each from

Different types of user interfaces differ significantly in the num-
ber of elements and how they are displayed. To examine how such
differences affect the way users look at Uls, we collected and an-
alyzed a large eye-tracking-based dataset, UEyes (62 participants,
1,980 UI screenshots, near 20K eye movement sequences), covering
four major Ul types: webpage, desktop UI, mobile U, and poster.
Furthermore, we analyze and discuss the differences in important
factors, such as color, location, and gaze direction across Ul types,
individual viewing strategies and potential future directions. This
position paper is a derivative of our recent paper [9] with a partic-
ular focus on the UEyes dataset.
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1 INTRODUCTION

The study of what captures users’ attention when interacting with
user interfaces (Uls) has been a longstanding area of interest in HCI
research. This understanding is essential for designers seeking to
direct users’ attention, communicate important information, and
prevent visual overload [17, 18]. Despite years of research on this
topic, our understanding of how different types of Uls vary regard-
ing visual saliency remains limited. For example, posters usually
feature only a few images, whereas desktop and mobile Uls tend
to include more components, organized as widgets. Understanding
how these differences affect eye-movement patterns is essential.
In this paper, we present UEyes, a new eye-tracking dataset cap-
tured using a high-fidelity in-lab eye tracker on a large scale. While
previous studies relied on mouse movements or manual annota-
tions as proxies for eye movements, UEyes provides fine-grained
ground-truth data on visual saliency. Our dataset includes around
20K multi-duration saliency maps and scanpaths of 62 users who
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desktop, mobile, webpage, and poster applications. Furthermore, we
analyze and compare saliency-related tendencies across different
types of Uls, addressing both bottom-up factors related to the visual
primitives of the stimulus (e.g., color bias) and top-down (learned)
factors related to the distribution of features in the dataset (e.g.,
location bias and scanpath direction). We present several previously
unreported findings that illuminate what distinguishes particular
UI types.

2 EXISTING VISUAL SALIENCY DATASETS

Most visual saliency datasets available today focus on specific types
of designs and provide a relatively small number of saliency re-
sults. These datasets are often limited to a particular type of visual
design, with data collected from a small group of participants in
a restricted context. For example, datasets such as MASSVIS [3],
iSUN [21], SALICON [8], MIT1003 [11], MIT300 [10], NUSEF [16],
and Leiva et al. [14] typically encompass only one specific type
of image, such as indoor and outdoor natural images, mobile user
interfaces, visual flows in comics, webpages, and posters. While
CAT2000 [2] includes 20 categories, all of them are classes of natural
images, with additional augmented natural images such as sketches
and cartoons, and noisy natural images like low-resolution scenes
and Gaussian-noised images. However, saliency prediction models
trained on specific image types are often limited in their ability to
adapt to broader types of images and cannot generalize to predict
visual saliency for a wide range of them. To address this limitation,
we collected the UEyes dataset for this work, which includes eye-
tracking data for four common categories of user interfaces and
a wide variety of images, with a focus on diverse visual designs.
By including a broad range of Uls, our dataset provides a valuable
resource for researchers seeking to develop saliency prediction
models that can adapt to different types of images and generalize
across various domains.

While prior research has explored the use of crowdsourcing to
collect saliency-related data (e.g., Imp1k [6] and SALICON [8]),
these methods cannot provide the high-fidelity in-lab eye-tracking
data that is crucial for accurate results. Proxy sensors, such as
webcams and cursor movements, present their own issues, includ-
ing accuracy issues with webcam-based methods [21] during fa-
cial landmark tracking, eye region extraction, and calibration, and
slower, more deliberative cognitive processes with cursor-based
approaches [1, 8, 12, 13] than those involved in eye movements. To
address these limitations, we collected real-time eye-tracking data
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via an eye tracker and focused on common Ul types to systemati-
cally analyze and compare user viewing behavior.

3 DATASET COLLECTION

The UEyes dataset is composed of both the 1,980 UI screenshots
and the associated metadata and eye-tracking logs from 62 viewers,
collected in a laboratory by means of a modern eye tracker. This
dataset contains 495 screenshots from each of the following UI
types:

Webpage: We collected 494 webpage images from the Alexa
500 dataset [19], 1,507 images from the Visual Complexity
and Aesthetics dataset [15], and 200 images from the Imp1k
dataset [6]. We extended the breadth of the webpage image
set by capturing 103 additional webpage screenshots.

Desktop UIL: The desktop Ul image set contains the Waltteri
Github desktop UI dataset [4], representing 51 desktop Uls,
and an additional 303 desktop UI images collected in line
with the criteria presented below.

Mobile UI: We extracted a sample of 1,761 images from among
the 46,064 mobile Ul images from the RICO dataset [5]. We
extended the set with 42 further mobile UI images.

Poster: The poster image set contains 200 ads and 198 info-
graphics from the Imp1k dataset [6], along with 103 addi-
tional posters we collected.

To ensure a diverse and representative dataset, we added new
images that were either substantially different from those in the pre-
existing dataset or commonly used in day-to-day life. For mobile
Ul images, we collected apps from various categories, including
school, library, music, and settings. We also added more desktop UL
images to create a balanced final dataset. We filtered out any images
containing pornography and randomly sampled images of each type
to create 55 "image blocks" for user assessment. Each block consisted
of nine images representing each Ul type, for a total of 36 images per
block. To mimic users’ typical viewing experience, we adjusted the
screen angle for each participant during the data collection process.
We used the same visual angle for all Ul types, including mobile Uls,
to ensure a fair comparison. This consistent presentation across
types prevented the tracking technology’s accuracy limits from
disproportionately affecting the mobile Ul results, enabling us to
conduct consistent data collection and analysis across all UI types.

Participants. We recruited a total of 66 participants, comprising
23 males and 43 females, through mailing lists and social media
promotions. The average age was 27.25 (SD = 7.26). All participants
had normal vision, with 43 of them having uncorrected vision and
23 wearing glasses or contact lenses for corrected-to-normal vision.
None of the participants were colorblind. We excluded the gaze
data of four participants due to inaccurate eye-tracking calibration.
Each user participated in the study for an hour and received 30
EUR as compensation for their time and effort.

Experimental Design. Our system selected nine blocks ran-
domly from a pool of 55 blocks for each user, resulting in a total of
324 images shown to each user. We tried to make sure each block
has been shown to about the same number of users. Each block
contained nine images for each UI type. The order of presentation
for the images within each block was randomized.
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Apparatus. We presented the images on a 24-inch HP Compaq
LA2405wg desktop monitor with dimensions of 32.5 X 52 cm and
a resolution of 1920 X 1200 px. To collect high-quality gaze data,
we used a Gazepoint GP3 eye tracker with a sampling rate of 60
Hz. The eye tracker was positioned under the screen and tilted
upwards, with its angle adjusted for each participant. The eye-
tracking software, Gazepoint Control, provided feedback to ensure
that the participant was seated at a distance of approximately 50-65
cm from the tracker.

Procedure. The tracker was calibrated using Gazepoint Con-
trol’s nine-point calibration and tested on the calibration test screen.
To ensure the quality of the data in the post-processing stage, each
participant was then shown three images of grids with different
sizes and instructed to look at the corners of the grids, starting
from the top left and moving clockwise. Following the calibration,
each participant completed nine blocks with self-managed breaks.
In each block, the participant was presented with Ul images and
asked to examine them for seven seconds, imagining they were
in a corresponding real-world situation. No specific task was as-
signed, following the methodology of other bottom-up saliency
studies. After the last block of Ul images, the participant filled out
a demographics questionnaire.

Data Processing. We double-checked the collected data to guar-
antee the dataset’s quality, and we removed any user data exhibiting
inaccurate calibration or duplicate results. Accordingly, the final
dataset contains 94.86% of the raw data collected. Fixations beyond
image boundaries (6.8% of the fixations) were not considered for
analysis.

3.1 Components of the Dataset
In the following we describe the key features of our dataset.

Design images: 495 images of each UI category, 1,980 images
in total (55 blocks of 36 images each). .

Eye-tracking logs: 554 raw logs from the eye tracker in CSV
format. Each log includes eye movement data for one partic-
ipant and one image block.

Image types: Categorization of each image in a separate CSV
file. Each image can belong to only one category.

Multi-duration saliency maps: Saliency maps for 1s, 3s,
and 7s of free-viewing. Each fixation is weighted by the
time duration of each fixation.

Scanpaths: Sequences of fixations for participants. Figure 1
shows examples of saliency maps and scanpaths.

Segmentation information: A JSON file for each UI with
bounding boxes of detected images, texts, and faces. We
modified the UIED model [20] by (1) solving a model lim-
itation that ignored text detection and (2) integrating face
detection with OpenCV face detection approach using Haar
feature-based cascade classifiers [7].

4 HOW PEOPLE LOOK AT UIS

We further analyzed our UEyes dataset and found that users tend to
focus more on the upper-left region of a user interface, regardless
of the type of UI, which is consistent with prior findings on mobile
Uls [14]. Additionally, we have observed that when users make
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Figure 1: Examples of saliency maps and scanpaths in the UEyes dataset.

saccades, their gaze tendsx to move towards the right or bottom right tend to cover larger distances between consecutive points
portion of the UL We have also found that movements towards the than movements towards the bottom.
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Figure 2: Different users have different viewing strategies on user interfaces. Image-oriented users often look at images before

text, while text-oriented users prefer the opposite.

In our analysis, we discovered that text elements are more likely
to capture users’ attention than images. This observation explains
why saccades tend to move from left to right, rather than the oppo-
site direction. It is worth noting, however, that this result could be
due to our dataset, which primarily consisted of English-language
interfaces that require left-to-right reading. Despite this, the ratio
of images to text does not appear to influence the distribution of
visited and revisited elements within these two categories. Addi-
tionally, we found that saccades towards the right-hand side of
the interface tend to cover greater distances between consecutive
points than those towards the bottom. This finding provides evi-
dence that user interfaces are not viewed in the same way as natural
scenes [14]. Instead of a center bias, we observed a top-left bias.
Our data allow a deeper dive into various subtle differences among
the types of Uls examined. Several distinctions exemplify this:

Webpage: When looking at webpages, participants showed a
preference for scanning from left to right, resulting in larger
distances between consecutive fixations compared to other
types of user interfaces.

Desktop UIL: Unlike in other types of user interfaces, fixations
on desktop Uls are not evenly spread over the top-left quad-
rant. Instead, salient areas are divided into two regions: one
right above the center and the other around the top-left
corner.

Mobile UI: Compared to other types of user interfaces, mobile
Uls have lower visit and revisit ratios. This suggests that
users tend to concentrate more on a few elements of the UL
that attract their attention while ignoring others. Moreover,
there is less likelihood of revisiting the same elements.

Poster: Compared to desktop and mobile Uls, participants ex-
hibited a much stronger tendency to scan from left to right,
with only a small proportion of saccades directed from top

to bottom. Additionally, the distances between consecutive
fixation points showed more significant variation in this type
of user interface than in others.

5 DISCUSSION AND FUTURE WORK

Our study sheds new light on the eye-movement behavior that
occurs with specific UI types. Here, we discuss potential future
directions.

5.1 Predictive Models

The dataset can inform the assessment and improvement of compu-
tational models for visual saliency. Given a Ul as input, a saliency
model predicts saliency maps or scanpaths, which simulate how
users perceive that UL These models assist UI designers by predict-
ing where users are likely to fix their gaze within a given design,
enabling the designers to update it to emphasize the important
areas better. Additionally, such models may help designers ’reflow’
UI designs and create versions that maintain the desired visual em-
phasis across various screen sizes. In our recent work, we presented
some improvements on predictive models [9]. However, there is
still ample room for improvement particularly in the accuracy of
scanpath prediction.

5.2 Individual Viewing Strategies

We asked participants to self-report their viewing strategies. We
found that some participants preferred to start by looking at im-
ages, while others focused on text or titles first. Participants also
described different strategies for getting an overall idea of the Ul
Some preferred to check the whole picture first, while others relied
on titles to grab the general ideas and used images to understand
the content better. Some participants indicated that they focused
on the center of the page first, particularly when the layout was
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center-aligned, before scanning from top to bottom and left to right.
Figure 2 show the different individual viewing strategies visually
in our dataset. These findings provide insights into the various
viewing strategies that individuals use when looking at Uls and can
inform the development of more personalized predictive models.
To accurately predict gaze behavior, it is essential to consider
the varying viewing strategies that individuals use when looking at
user interfaces. Future research should focus on understanding and
modeling these differences across Ul types and at the individual
level. Personalized predictive models that account for these differ-
ences can help improve the accuracy of gaze behavior predictions.

5.3 Individual Element Influence

further investigations can be conducted to explore the potential
impact of images on the viewing path of a user interface (UI). For
instance, if we replace the food image in the recipe app with a
different image, such as a human face, would users still follow the
same viewing path? It is worth noting that images have inherent
visual saliency that is distinct from the Ul itself, and replacing them
may significantly alter user perception and viewing trajectory. To
gain a deeper understanding of the effects of individual UI com-
ponents, future research could aim to disentangle the effects of
various elements, such as photos, text, and buttons, rather than
considering the entire UI as an indivisible entity.
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