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1 UEYES DATASET 
In the following we describe the key features of our dataset. It 
includes: 

Design images: 495 images of each UI category, 1980 images 
in total. Images are divided into 55 blocks of 36 images each. 

Eye-tracking logs: 554 raw logs from the eye tracker in CSV 
format. Each log includes eye movement data for one partic-
ipant and one image block. 

Image types: Categorization of each image in a separate CSV 
fle. Each image can belong to only one category. 

Multi-duration saliency maps: Saliency maps for 1 s, 3 s, and 
7 s of free-viewing. Each fxation is weighted by the time 
duration of each fxation. 

Scanpaths: Sequences of fxations for every participant. Fig-
ure 1 shows the distributions of time duration and saccade 
length. 

Segmentation information: A JSON fle for each UI with 
bounding boxes of detected images, texts, and faces. For this, 
we modifed the UIED model [17] by (1) solving a model 
limitation that ignored text detection and (2) integrating face 
detection with OpenCV face detection approach using Haar 
feature-based cascade classifers [4] into the model. 

1.1 Saliency Maps and Scanpaths Examples 
Figure 2 shows some examples of saliency maps and scanpaths. 

2 VISUAL SALIENCY VS. VISUAL 
IMPORTANCE 

We should note that visual saliency accounts for information about 
eye movements, while visual importance is captured by proxy data, 
like mouse movements or manual annotations. Visual importance 
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results are generated from the UMSI model [3]. Although a cursor-
based interface can be seen as a proxy for eye-tracking [1, 5, 8, 
9], deciding where to move a cursor refects diferent cognitive 
processes from eye movements [16]. As can be observed in Figure 3, 
visual importance often covers more extensive areas of the UI than 
a user may have had time to inspect in a relatively short time (up 
to 7 s in our study). Visual importance captures informative areas 
such as images and texts, but most of them do not really attract the 
user’s attention. 

3 SALIENCY MAP MODEL: UMSI++ 
The main module of the original UMSI model was trained with KL-
divergence [6] and Cross-Correlation [12] losses with coefcients 10 
and -3. The output of the UMSI model is the fipped saliency maps 
requiring postprocessing of black-to-white invert. Our UMSI++ 
model contains two steps during the training process instead of the 
fipped ones. 

We frst trained the model on the Mean Squared Error (MSE) loss 
between predicted and ground-truth saliency maps for 10 epochs, 
to encourage the model to approach the ground-truth saliency 
maps. Next, in addition to the original KL-divergence and Cross-
Correlation [12] loss terms used in UMSI, we further incorporated 
two additional loss terms: Normalized Scanpath Saliency (NSS) and 
Similarity. 

Given the predicted saliency map Ĥ and the ground-truth binary 
map of fxation locations F, the Normalized Scanpath Saliency (NSS) 
loss term LNSS is defned as 

∑ 1 � � Ĥ − � (Ĥ )LNSS (Ĥ , F) = � (Ĥ ) ◦ F , where � (Ĥ ) = � |F| � (Ĥ ) + � � 
(1) 

where � is the index of pixels and |F| is the total number of fxation 
points on the ground-truth binary fxation map F. The symbol ◦ is 
the Hadamard product, which is the element-wise multiplication. 
The function � (·) is a whitening transformation performing a 
center-surround operation. � is a regularization term. 
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(a) Fixation duration (s) (b) Fixation saccade length (px) 

Figure 1: Distributions of fxation duration and saccade length. 

Furthermore, given the predicted saliency map Ĥ and the ground-
truth saliency map H, we defne the Similarity loss term LSIM as ∑ � � 
LSIM (Ĥ , H) = ���� (� (Ĥ ), � (H)) � 

� 

ˆ�(Ĥ ) H − ���(Ĥ ) (2) 
where � (Ĥ ) = Í , �(Ĥ ) = 

Ĥ� + � ��� (Ĥ ) − ���(Ĥ ) + � 

where � is the index of the �-th pixel on the saliency map. The func-
tion ���� (·) computes the element-wise minimum values between 
two saliency maps, while ���(·) and ��� (·) compute the minimum 
and maximum values on the given saliency map respectively. � (·) 
is a function normalizing saliency map values in the range of [0, 1], 
and �(·) rescales the saliency map with the min-max normalization 
algorithm. 

Eventually, we train the model on the loss L = 10 · LKL − 3 · 
LCC −LSIM −0.5 ·LNSS. After training for 10 epochs, the coefcient 
of the NSS loss term LNSS decreases to -5, and we further train 
the model for another 10 epochs. The coefcients of LCC, LSIM, 
and LNSS are negative since they are measurements for saliency 
map similarity, i.e., larger values mean better saliency map results. 
For comparison, we also apply the same training pipeline and loss 
terms to the SAM architecture to get the result of model SAM++. 
For both models, training each epoch takes about 2 minutes on 
one NVIDIA GeForce RTX 2080Ti GPU. Thus, the entire training 
process takes about 1 hour on our UEyes dataset. 

� 

4 EVALUATION METRICS FOR SALIENCY MAP 
MODELS 

In the following, we explain six widely used saliency evaluation 
metrics. 

4.0.1 Area under ROC Curve (AUC). Area under ROC Curve (AUC) 
is the most commonly used evaluation metric for measuring saliency 
map performance. It evaluates saliency as a binary classifer of fxa-
tion points at various thresholds. The Receiver Operating Charac-
teristic Curve (ROC Curve) is a curve showing the rates of the true 
positives and false positives at diferent discrimination thresholds. 

The Area Under the ROC curve (AUC) measures the true and false 
positive rates under such a binary classifer. AUC-Judd [2, 7] is a 
variation of AUC where the true positive rate is defned as the ratio 
of the true positive points in relation to the number of ground-
truth fxation points above various threshold values, and the false 
positive rate is the ratio of false positive points in relation to the 
total number of non-fxated pixels. Therefore, given the predicted 
saliency heatmap map Ĥ and the ground-truth fxation map F, the 
AUC-Judd evaluation metric is defned as ∫ � � 
LAUC-Judd (Ĥ , F) = ROC � �� (Ĥ , F), ��� (Ĥ , F)

� 

| (Ĥ ◦ � ) ≥ � | | (Ĥ ◦ � ) < � |
where � �� (Ĥ , H) = , ��� (Ĥ , H) = |F| |1 − F| 

(3) 

where � �� (·) and ��� (·) represent the true positive rate and false 
positive rate at the threshold value � respectively. |F| is the number 
of points with the value 1, which is the number of fxation points, 
while |1 − F| is the number of non-fxation points. The symbol ◦ is 
the Hadamard product, which is the element-wise multiplication. 
Thus, | (Ĥ ◦ � ) ≥ � | shows the number of positive points on the 
predicted heatmap Ĥ above the threshold value � . In practice, the 
threshold value � can be selected as the set of unique saliency values 
on the predicted heatmap Ĥ . 

4.0.2 Normalized Scanpath Saliency (NSS). Normalized Scanpath 
Saliency (NSS) [13] is the average normalized saliency at fxation 
points. The detailed defnition has been shown in Equation 1. NSS 
is more sensitive to detecting false positive points than the AUC 
(although it may still be high with many false positives given a large 
number of true positives, since a small number of false positives 
does not afect the AUC value. However, all the false positives 
decrease the NSS (in other words, NSS penalizes false positives). 

4.0.3 Information Gain (IG). Information Gain (IG) [10, 11] is used 
for measuring saliency results beyond systematic bias. Given the 
predicted saliency heatmap Ĥ and the ground-truth heatmap H and 
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Figure 2: Examples of saliency maps and scanpaths in the UEyes dataset. 

fxation map F, IG is defned as where � is the index of the �-th pixel on the heatmap and |F| is the 
1 ∑ � � total number of fxation points on the ground-truth binary fxation 

LIG (Ĥ , H) = |� | log2 (� (Ĥ ) ◦ F + �) − log2 (� (B) ◦ F + �) � map F. The baseline map B is the systematic bias. In practice, it can 
� 

ˆ�(Ĥ ) H − ���(Ĥ )
where � (Ĥ ) = Í , �(Ĥ ) = 

ˆ
� H� + � ��� (Ĥ ) − ���(Ĥ ) + � 

(4) 
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Figure 3: Examples of visual importance and visual saliency. 

be e.g. a zero map or a center bias prior map [10, 11]. The function 
� (·) is a function normalizing values in the range of [0, 1]. � is 
for regularization. The information gain evaluation metric demon-
strates the average information gain of the normalized saliency 
heatmap over the normalized baseline bias map at the ground-truth 
fxation points. 

4.0.4 Similarity (SIM). The similarity (SIM) [14, 15] metric mea-
sures the intersection between the predicted heatmap and the 
ground-truth heatmap, indicating the overlapping of the two heatmaps. 
It is defned as the sum of the minimum value of the normalized 
predicted heatmap and the normalized ground-truth heatmap. The 

detailed defnition has been shown in Equation 2. SIM is lower 
for sparse heatmap maps and very sensitive to failed detection of 
saliency points, since missing saliency values would lead to zero 
similarity, thus reducing the similarity score. 

4.0.5 Pearson’s Correlation Coeficient (CC). Pearson’s Correlation 
Coefcient (CC) [12] is a measurement for evaluating the correla-
tion or dependence between the predicted saliency heatmap and 
the ground-truth heatmap. Given the predicted saliency heatmap 
Ĥ and the ground-truth heatmap H, CC is defned as 

Ĥ − � (Ĥ )LCC (Ĥ , H) = � (� (Ĥ ),� (H)), where � (Ĥ ) = (5) 
� (Ĥ ) + � 
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Metric Sensitive to FN Sensitive to FP Measurement Metric Category 

AUC-Judd + - Similarity Location-based 
NSS + + Similarity Location-based 
InfoGain ++ Similarity Location-based 
Similarity ++ Similarity Distribution-based 
CC + + Similarity Distribution-based 
KL ++ Dissimilarity Distribution-based 

Table 1: Diferent saliency prediction evaluation metrics are sensitive to diferent errors, e.g, false positives (FP) or false 
negatives (FN). Here ’+’ means that the metric is sensitive to the error, and ’++’ means signifcant sensitivity, while ’-’ shows the 
metric ignores the error. Metrics measuring similarity have higher values, while the one measuring dissimilarity has lower 
values for better prediction models. Location-based evaluation metrics focus on fxation points, while distribution-based ones 
focus on continuous distributions of the saliency heatmaps. 

Im
ag

e-
or
ie
nt
ed

Te
xt
-o
ri
en

te
d 

Figure 4: Diferent users have diferent viewing strategies on user interfaces. Image-oriented users often look at images before 
text, while text-oriented users have the opposite preference. 

where the function � (·, ·) is the computation of covariance and 
� (·) is a whitening transformation performing a a center-surround 
operation. � is for regularization. The CC metric is sensitive to both 
false positive and false negative points. It is symmetric and thus 
cannot distinguish between false positives and false negatives. 

4.0.6 Kullback-Leibler Divergence (KL). Unlike the above-mentioned 
saliency evaluation metrics, which evaluate how close they are to 
some ground-truth value, the Kullback-Leibler Divergence (KL) [6] 
metric measures the diference between the distributions of the 
saliency prediction and the ground-truth. A lower KL score indi-
cates a better estimation of the saliency map. The KL metric signif-
cantly penalizes false negatives, especially when the prediction is 
close to zero for salient areas. 

4.0.7 Metric Properties. We describe the properties of the saliency 
evaluation metrics regarding their sensitivity to false positives 

or false negatives, similarity (or dissimilarity) measurement, and 
metric categories (Table 1). 

(1) Sensitivity: All metrics are sensitive to false negatives. KL, 
IG, and SIM penalize signifcantly false negatives, especially 
when the predicted values are close to zero. The normaliza-
tion step of NSS increases the penalty for detecting false 
positives and thus makes it more sensitive to false positives 
than other metrics. CC is a symmetric metric according to 
its defnition, so it has equal sensitivity to false positives 
and false negatives. The AUC score is insensitive to false 
positives. 

(2) Measurement: KL is dissimilarity measure, while the other 
metrics similarity measures. Thus, better saliency prediction 
models have lower scores for KL and higher for any of the 
other metrics. 

(3) Metric Category: Location-based metrics (AUC, NSS, Info-
Gain) evaluate models based on fxation points, whereas 
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Figure 5: Visited and revisited elements comparison for the scanpath predictive models. 
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distribution-based metrics (SIM, CC, KL) evaluate models 
based on saliency heatmaps, as a continuous distribution. 

5 INDIVIDUAL VIEWING STRATEGIES 
We asked participants to self-report their viewing strategies after 
the study. Some participants prefer to start by looking at images, 
while others prefer to look at text or titles frst, as shown in Figure 4. 
When asked to describe the strategies they used to look at these UIs, 
some participants indicated that they prefer to see “colorful images 
and images of people or animals, which caught my attention”. In 
contrast, some others “tried to look at images rather than read the 
information”. 

To get the overall idea of the UI, some participants indicated 
that they frst checked “the whole picture” and then focused on 
“the most interesting parts”. Some participants looked for titles “to 
grab the general ideas” and utilized pictures “to understand the 
content better”. Others focused on the center of the page frst “if the 
layout is center-aligned.” and then scanned from top to bottom and 
from left to right. These observations can guide future eforts in 
understanding individual strategies across UI types and ultimately 
may generate more personalized predictive models. 

6 VISITED VS. REVISITED ELEMENTS OF 
SCANPATH MODELS 

Figure 5 shows the visited and revisited element ratio for the scan-
path predictive models. 
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