

ReverseORC: Reverse Engineering of Resizable User Interface
Layouts with OR-Constraints

Yue Jiang
Max Planck Institute for Informatics

Wolfgang Stuerzlinger
School of Interactive Arts +

Christof Lutteroth
Department of Computer Science,

Saarbrücken, Germany Technology (SIAT), Simon Fraser University of Bath
yuejiang@mpi-inf.mpg.de University Bath, UK

Vancouver, Canada c.lutteroth@bath.ac.uk
w.s@sfu.ca

Figure 1: Reverse engineering of the MS Word “ribbon” toolbar. ReverseORC samples the user interface (UI) at diferent sizes
and reconstructs parsimonious layout specifcations for each size. It then detects changes between the layout specifcations
using a novel dif algorithm for layouts, and matches the changes with corresponding layout patterns to reconstruct a UI with
the same resize behaviours as the original. We visualize the overall quality of reconstruction at diferent sizes in an error map
by color-coding structural error (shades of yellow), transition error (blue/green), and ‘fault lines’ (black) indicating potentially
inconsistent behaviors.

ABSTRACT
Reverse engineering (RE) of user interfaces (UIs) plays an important
role in software evolution. However, the large diversity of UI tech-
nologies and the need for UIs to be resizable make this challenging.
We propose ReverseORC, a novel RE approach able to discover
diverse layout types and their dynamic resizing behaviours inde-
pendently of their implementation, and to specify them by using
OR constraints. Unlike previous RE approaches, ReverseORC infers

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8096-6/21/05.
https://doi.org/10.1145/3411764.3445043

fexible layout constraint specifcations by sampling UIs at diferent
sizes and analyzing the diferences between them. It can create spec-
ifcations that replicate even some non-standard layout managers
with complex dynamic layout behaviours. We demonstrate that
ReverseORC works across diferent platforms with very diferent
layout approaches, e.g., for GUIs as well as for the Web. Further-
more, it can be used to detect and fx problems in legacy UIs, extend
UIs with enhanced layout behaviours, and support the creation of
fexible UI layouts.

CCS CONCEPTS
• Human-centered computing → User interface toolkits.

KEYWORDS
ORC Layout; reverse engineering; constraint-based layout; adaptive
user interface; resizable user interface

This work is licensed under a Creative Commons Attribution International
4.0 License.

https://doi.org/10.1145/3411764.3445043
https://doi.org/10.1145/3411764.3445043

CHI ’21, May 8–13, 2021, Yokohama, Japan

ACM Reference Format:
Yue Jiang, Wolfgang Stuerzlinger, and Christof Lutteroth. 2021. Reverse-
ORC: Reverse Engineering of Resizable User Interface Layouts with OR-
Constraints. In CHI Conference on Human Factors in Computing Systems
(CHI ’21), May 8–13, 2021, Yokohama, Japan. ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3411764.3445043

1 INTRODUCTION
Modern user interfaces (UIs) have become increasingly fexible.
They use sophisticated layouts that can adapt to diferent sizes and
orientations. For example, responsive web layouts [40] enable de-
signers to create web UIs that work on large desktop screens, small
tablets, and tiny mobile devices by rearranging and adapting the UI.
Similar approaches are used for mobile UIs [58, 72] and sometimes
even for desktop UIs. The UIs and their layouts are created using
UI toolkits [25, 26, 45] and UI builders [60, 73], which facilitate the
efcient creation and editing of common layouts and support an
iterative design process. However, available UI toolkits, builders
and supported layouts are numerous and constantly evolving, lead-
ing to a wide diversity of diferent layouts such as grid, fow, group,
stack, tile, fexbox and constraint-based layouts.

It is challenging to change an existing UI if its source code or
specifcation is not available. Even if a specifcation is available, it is
usually tied to the UI toolkit that was used to create the UI, and the
diversity of UI toolkits and layouts makes it hard to understand and
use such a specifcation. The problem of reconstructing an existing
UI for further development is called UI reverse engineering (RE). It
is known to be difcult but often necessary as software and devices
evolve and new UI toolkits and platforms need to be supported. For
example, developers may want to modernize a legacy UI to beneft
from novel technologies – a use case where it is quite common that
source code is not available, hard to modify, or an equivalent layout
API may not exist. An illustrative case here is porting desktop
GUIs to smartphones or vice versa, or even to/from webpages. It is
very challenging to reverse engineer a UI so that its features and
behaviours are consistent across diferent toolkits and platforms;
so developers usually spend a lot of time trying to understand a
specifcation and often end up manually re-implementing large
portions of the UI [18, 23, 52].

In order to ease the burden of UI RE, many automated RE tools
have been proposed. By using automated RE tools, specifcations of
GUI elements, layouts, and application behaviours can be extracted
and modifed independently of their underlying implementations
and platforms. Previous works on reverse engineering UIs focus
on detecting components in the interface [8, 42, 64], migrating UIs
from one platform to another [17, 37, 41, 43, 44, 56, 57], and/or
performing input and output redirection [9, 10, 64, 65]. Previous
works have shown that RE tools can reconstruct UI layouts that look
similar to the originals, and can then generate implementations
of the UI for other UI platforms and toolkits. However, while UI
layout has evolved, RE tools have not kept pace with modern UIs:
they cannot currently capture the complex resizing behaviours that
have become commonplace for the web, on mobile devices, and
even many desktop UIs.

This paper presents ReverseORC, a novel prototype that is able
to reverse engineer UI layout specifcations based on a UI’s resize
behaviors. Given only widget placements for diferent UI sizes of

Yue Jiang, Wolfgang Stuerzlinger, Christof Luteroth

an existing GUI, ReverseORC identifes how layout behaviours
are encoded in the UI and generates a corresponding layout spec-
ifcation. The new layout specifcation is expressed using ORC
Layout [30], an approach for constraint-based layouts based on
OR-constraints (ORC). ORC Layout is a powerful tool that allows
designers to express modern resizable UI layouts in a mathematical,
platform-independent manner, as constraint optimization problems.
It unifes fow layouts and conventional constraint-based layouts
to represent a large variety of layouts for desktop, web and mobile
platforms. We build ReverseORC on ORC Layout as this is one of
the most fexible layout specifcation mechanisms that does not
involve programming.

ReverseORC automatically extracts specifcations of how a UI is
laid out for diferent UI sizes. It determines which UI size samples
are necessary to infer an equivalent ORC layout specifcation. Al-
though it is not possible in general to reverse engineer an arbitrary
layout algorithm solely from examples for its output, ReverseORC
is able to detect common layouts such as grids and fow. Addi-
tionally, it is able to detect advanced patterns describing dynamic
changes in a layout (ORC patterns), such as widgets shifting or
disappearing when the UI is made smaller. ReverseORC is designed
to generate parsimonious specifcations, i.e. specifcations that are
sufciently rich to capture the desired behaviour, but not more
complex than necessary. This makes ReverseORC’s output easier
to understand for a human designer, so that they can potentially
build on it later. Only if ReverseORC cannot identify a pattern in
the observed changes, then it uses OR constraints to combine the
specifcations of the respective layouts.

We demonstrate that ReverseORC can be applied to UIs on difer-
ent platforms, such as desktop and web UIs, reconstructing platform-
independent specifcations for a wide range of UI technologies. Fur-
thermore, we support a variety of use cases based on the generated
ORC layout specifcations: Many existing GUI layouts are static or
cannot ft a large range of screen sizes adaptively, e.g., from smart
watches and smartphones to desktop environments. Designers can
specify desired adaptations of such a layout by example, and let Re-
verseORC reconstruct an appropriate fexible layout specifcation.
In a similar manner, designers can use ReverseORC to create new
resizable layout specifcations from scratch. Furthermore, Reverse-
ORC allows designers to fx bad layout behaviors by modifying
the generated ORC layout specifcation. In summary, ReverseORC
lifts the level of abstraction of the layout specifcation process by
allows designers to create and edit sophisticated fexible layout
specifcations by example.

Novelty. In contrast to existing GUI reverse engineering ap-
proaches [17, 37, 41, 43, 44, 56, 57], ReverseORC is able to recon-
struct the dynamic resizing behaviors of a GUI. Extending previous
work that identifed static layout components, it detects advanced
layout patterns such as optional and shifting widgets and specifes
their behaviors. It is platform and toolkit independent, which en-
ables reuse of layouts across applications and platforms. Finally, it
allows designers to specify the resize behavior of UIs by example.
In particular, we demonstrate the following contributions:

(1) A novel method for identifying and reverse engineering
dynamic layout behaviors for diferent platforms, only by
sampling diferent layout sizes for an existing UI.

https://doi.org/10.1145/3411764.3445043
https://doi.org/10.1145/3411764.3445043

ReverseORC: Reverse Engineering of Resizable User Interface Layouts with OR-Constraints

(2) A novel method for detecting the diferences between layout
specifcations.

(3) A novel method of specifying and editing resizable layouts
by example.

(4) Validation of our approach based on real-life layouts, includ-
ing GUI layouts, e.g., the Microsoft Word Ribbon, and web
layouts, e.g., the BBC News website, as well as demonstrating
that ReverseORC can reverse engineer layouts based on a
very small number of exemplars.

2 RELATED WORK

2.1 Resizable UI Layout
Due to the large diversity of existing computing devices, which
vary in their screen sizes and aspect ratios, and users’ diferent
personal viewing preferences, it is important that applications sup-
port resizable UI layouts. Layout models are widely used to specify
resizable UI layouts, and layout managers then generate the lay-
out results based on the specifcations. Early approaches proposed
simple layout models, such as group, grid, table, and grid-bag lay-
outs [45, 47]. Object-oriented models like Amulet [48] combined
properties of fow and grid layouts. Modern GUI layout models
are mostly constraint-based [38, 74] and used together with UI
builders, which can create layout constraints based on direct ma-
nipulation [32, 60, 69, 73].

Jiang et al. [30] proposed ORC Layout, an approach for constraint-
based layouts based on OR-constraints (ORC). An OR-constraint
is a disjunctive constraint, where only one disjunctive part needs
to be true. ORC Layout unifes fow and conventional constraint-
based layouts through adding OR-constraints to standard soft/hard
linear constraint systems. ORC Layout specifcations also enable
the use of ORC design patterns, which enable designers to create a
large variety of fexible layouts that work across diferent screen
sizes and orientations. ORC Layout is a powerful, high-level lay-
out specifcation method; it enables users to describe layouts with
dynamic behaviors that adapt to screens with very diferent sizes,
orientations, and aspect ratios, using only a single layout specif-
cation. ORCSolver [31] is a novel solving technique to efciently
solve ORC Layout specifcations. ReverseORC uses ORC Layout to
express the captured dynamic layout behaviors.

Previous work also investigated resizable web layouts. Chen et
al. [7] presented a page-adaptation technique that splits a web page
into smaller blocks to adapt pages for small screen devices. Xie
et al. [70] proposed a novel document representation dynamically
adapting screen sizes. Domshlak [13] enabled personalized presen-
tation of web page content. Constraints can also be used to specify
the desired layout of a web page, e.g. Borning et al. [4] proposed
a constraint-based web system enabling both the author and the
viewer to defne page layout constraints. Hosobe [22] introduced an
algorithm to solve hybrid systems of linear constraints and one-way
constraints to handle web document layouts efciently.

2.2 Customizing User Interfaces
Researchers have proposed several approaches that can be used
to modify a GUI if it is not automatically adapted to the user’s
requirements or if the adaptation is sub-optimal, e.g., when using

CHI ’21, May 8–13, 2021, Yokohama, Japan

Table 1: Overview of reverse engineering approaches (‘+’ de-
notes full and ‘∼’ partial support for certain layouts).

Basic
Layouts

Flow
Layouts

Dynamic
Topology

Most previous RE work +
Constraint-based RE [37] +
Model-driven RE [56, 57] + ∼
Expresso [33] ∼
InferUI [2] +
ReverseORC + + +

a GUI on a device with a smaller size. For traditional GUIs, Ed-
wards et al. [14] and Olsen et al. [53] proposed to modify interfaces
by replacing drawing objects and intercepting API commands in
applications with specifc toolkit implementations. WinCuts [66]
enabled window subdivision with a copy-paste method to confgure
input/output redirection. Mudibo [28] used input/output redirec-
tion to generate windows with multiple alternative positions, and
allowed users to choose a desired one. User Interface Façades [64]
detected all widgets and their hierarchy through an accessibility
API, enabled widget replacement, and presented advanced cus-
tomization of runtime interaction behaviour.

Previous research on web UI customization was mostly based
on a structured presentation, the Document Object Model (DOM).
ChickenFoot [3], CoScripter [34], and Koala [36] automated, cus-
tomized, and integrated web applications. Clip, Connect, Clone [16],
d.mix [19], and Vegemite [35] introduced end-user mash-up meth-
ods between existing applications. Highlight [51] re-authored web
applications on mobile interfaces.

As all UIs are instantiated as pixels, previous work widely ex-
plored pixel-level interpretation to enhance UIs. Pixel-based ap-
proaches have been proposed to access data [55], record the actions
performed by users [61], translate input and output into diferent
forms [1], improve target detection in accessibility APIs [27], per-
form visual manipulation [75], and event management [76]. Screen-
Crayons [54] enabled document and visual annotation. Sikuli [6, 71]
supported UI testing by writing visual test scripts. Genie [65] re-
verse engineered underlying commands to enable users to engage
with web applications via diferent input modalities. Hurst et al. [27]
presented improved target boundary detection based on the combi-
nation of an accessibility API and pixel-based methods. ReverseORC
is a platform- and framework-independent system enabling cus-
tomization for both GUI layouts and web layouts.

2.3 Reverse Engineering
UI reverse engineering is widely used to migrate applications from
one platform to another. Moore [42] presented a rule-based detec-
tion approach for partially automating the process of reversing en-
gineering legacy applications. Staiger [62] analyzed the source code,
identifed widgets, and reconstructed the GUI tree. MORPH [41, 43]
proposed a model-oriented re-engineering process for migrating
character-based legacy UIs to GUIs. REMAUI [50] was a pixel-based
approach that automatically reverse engineered mobile application
UIs. None of the above approaches yielded resizable layout infor-
mation.

CHI ’21, May 8–13, 2021, Yokohama, Japan

Reverse engineering has been used as a way to perform GUI cus-
tomization. UI Façades [64] enabled users to replace widgets and
change application behaviors for an existing application at runtime
through an accessibility API-based approach. Prefab [8–12] was
a pixel-based approach that provided a tree structure to interpret
content and hierarchy [11]. Both approaches identify interface el-
ements and allow the user to add interactive enhancements to a
GUI [8, 12, 64]. However, none of these approaches allowed users
to modify the layout itself. Instead of using pixel-based interpreta-
tions of a UI for reverse engineering [12] or migrating a UI directly
between diferent platforms [17, 59], our approach detects layout
behaviors and generates standard ORC Layout specifcations to fa-
cilitate UI development and customization. Similar to ReverseORC’s
layout structure reconstruction, InferUI [2] infers constraints to
describe a layout from UI exemplars. Yet, InferUI generates only
linear constraints, which maintain relative mutual alignments of
widgets but can only express a single topological arrangement. In
contrast, ReverseORC infers OR-constraints, which can express
dynamic topological layout changes such as fow, optional widgets,
and alternative positions.

Lutteroth [37] reverse engineered GUI layouts to recover higher-
level constraint-based specifcations [39] and to generate layouts
that are resizable. Sánchez Ramón et al. [56, 57, 59] proposed
a model-driven approach to reverse engineer legacy GUIs by
capturing the visual arrangement of elements in the layout and
produced GUI models with that explicit layout. While these ap-
proaches [56, 57] can capture common layout containers in a hier-
archical manner, ReverseORC is also able to reconstruct a platform-
independent specifcation of dynamic UI changes, such as optional
widgets or widgets that change position across the layout hierar-
chy to accommodate changes in screen space, which cannot be
expressed with common layout containers. The above approaches
were only able to deal with simple layout behaviors such as grid ar-
rangements, but could not deal with layouts that included dynamic
layout changes such as fows, shifting widgets or optional widgets.

Reverse engineering is also useful for web layouts. Moore et
al. [44] used the MORPH technique [41, 43] to re-engineer legacy
information systems to operate on the web. CELLEST [63] demon-
strated a process for migrating legacy GUIs to web-accessible plat-
forms. Gerdes [17] proposed a method to migrate Windows applica-
tions to Visual Basic .NET, based on runtime traces. VAQUISTA [67]
reverse engineered the presentation model of a web page to gen-
erate equivalent GUIs for other platforms. VIPS [5] presented an
approach for web content structure analysis based on visual repre-
sentation. Similar to ReverseORC’s exemplar-based layout design,
Expresso [33] allows designers to specify samples of a web UI at
diferent sizes. Expresso then either linearly interpolates widget
positions and sizes between the given UI sizes (‘keyframes’), or lets
them jump discontinuously, as specifed by the designer. In con-
trast to ReverseORC, Expresso does not infer behavioral UI layout
patterns dynamically. For example, if widgets should fow onto a
new line, the designer would have to specify keyframes for every
possible line break in Expresso. To the best of our knowledge there
is no reverse engineering approach for UI layouts that can extract
a UI’s dynamic resize behaviours. Table 1 shows a comparison of
the capabilities of diferent reverse engineering approaches.

Yue Jiang, Wolfgang Stuerzlinger, Christof Luteroth

3 OVERVIEW
Our ReverseORC approach frst extracts widget information from
the layout through accessibility APIs. Then, it uses a grid search
to sample and resize the layout through setting diferent window
sizes (Figure 2 a). It constructs a layout tree for each sampled layout
(Figure 2 b). ReverseORC then tracks all diferences between lay-
out trees of neighboring layouts during the sampling process and
generates corresponding layout diferences. Based on these layout
diferences, ReverseORC then infers overall layout behaviors and
patterns, and constructs a corresponding ORC layout specifcation,
enabling later modifcation and customization (Figure 2 c).

3.1 Usage Scenarios
ReverseORC fts into standard software development practice and
has many practical applications. Some typical usage scenarios are:

(1) Developers initiate automatic UI sampling with a platform-
specifc tool: For desktop UIs, developers run the app to
reverse engineer. Our tool then uses OS calls to set the UI
window size and accessibility API calls to query widgets
and their properties. For web UIs, developers use a tool with
an embedded browser, instrumented to resize and extract
widgets after the UI has been loaded. Similarly, for mobile
UIs we use an emulator, with emulator calls to set the screen
size and extract widgets. For each UI sample, all widgets and
their properties are stored in a platform independent format.
Previous work has demonstrated such approaches.

(2) Layout structure reconstruction, diference detection, and
ORC specifcation generation are performed automatically
based on the UI samples with our platform-independent tool.
The tool visualises the quality of the reverse engineered UI
(see 6.2) and allows developers to display it at specifc sizes
by clicking on points on the error map. Developers can adjust
the results and fx bad layout behaviors by modifying and
adding UI samples (see 7.3), or editing the ORC specifcation
directly using the ORC Editor [30, 31].

(3) ORC UI specifcations can then be used directly by running
them on a platform-specifc implementation of the ORC
Solver, which can run on desktop and mobile platforms as
well as the web1.

4 USER INTERFACE SAMPLING
To reverse engineer a GUI, we follow the common approach of
frst detecting the widgets of the UI, and then reconstructing the
layout of the widgets using ORC Layout as abstraction model. Sub-
sequently, we transform the reconstructed specifcation to its target
form, generating a new UI for the desired platform. As discussed
above, previous works only reconstruct lower-level UI specifca-
tions that ignore the more abstract aspects of UI layout during
this process. By sampling an existing UI at diferent layout sizes,
ReverseORC can identify and reverse engineer both GUI layout and
web layout behaviours. It frst extracts widget information from
the layout through accessibility APIs. Then, it uses a grid search
to sample and resize the UI layout by setting diferent window or
screen sizes. ReverseORC keeps track of any diferences between

1github.com/cpitclaudel/z3.wasm

https://1github.com/cpitclaudel/z3.wasm
https://1github.com/cpitclaudel/z3.wasm

ReverseORC: Reverse Engineering of Resizable User Interface Layouts with OR-Constraints CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 2: Overview of the diferent stages of the ReverseORC approach: a) UI sampling by setting diferent window sizes
(horizontal lines are divisors that defne Row layout containers); b) layout tree structure construction for each sample; and c)
diference detection between layout trees and layout pattern inference.

neighbouring layouts during the sampling process, and is then able
to reconstruct an abstract layout specifcation based on the way
the layout changes depending on its size.

4.1 Widget Extraction
Similar to UI Façades [64], our approach extracts widget infor-
mation of UIs through an accessibility API. An accessibility API
provides a structured representation analogous to the Document
Object Model (DOM). Compared to pixel-based approaches [8] or
computer vision recognition-based approaches [50], accessibility
APIs directly access the underlying data of a UI, which avoids the
potential for recognition errors. In addition, accessibility APIs can
access information that is not visible or not obtainable by analyz-
ing raw pixels, e.g., widget identities. We still acknowledge that
pixel-based approaches could be used as an alternative mechanism
in ReverseORC, albeit at the price of an increased risk of layout
recognition errors.

To extract the widget information ReverseORC needs, we tra-
verse the structured representation through the accessibility API.
Under the assumption that the bounding box of each widget is
rectangular, for each widget w in the layout, we retrieve its unique
identifer (w .id), size (w .width, w .height), and coordinates for its
top-left corner (w .left, w .top). Some accessibility APIs provide more
information about a UI, including information not only about the
widgets but also about the layout managers used. For example, it is
generally possible to access the full DOM of a web UI. However, Re-
verseORC does not use this information for the following reasons:
1) Layout information is not always available, e.g., some desktop
UIs do not provide it. 2) There are too many layout managers to
understand the layout behavior of a UI just from the DOM, so DOM
layout containers are often like black boxes. 3) Layout behaviors
are often described at least partly programmatically rather than
in the DOM, e.g., using JavaScript code; therefore they cannot be
inferred from the DOM alone. And 4) even if we could interpret
a DOM description of a UI layout, DOMs are often much more
complicated than they need to be. For example, many complex web

apps use large numbers of nested DIV elements, confounding as-
pects of layout and functional application design. One of the aims
of ReverseORC is to provide a parsimonious layout representation,
i.e., a representation that avoids unnecessary complexities. This is
achieved by analysing not how developers have specifed layouts,
but by analysing what layouts actually looks like, in the simplest
terms possible.

4.2 Grid Search
We use an adaptive grid search approach to obtain a representative
set of diferent layout exemplars by resizing the window or a virtual
screen. A brute force method to thoroughly analyze a layout would
be to sample as many exemplars as possible. However, in practice,
it can be expensive to resize the layout to all potential sizes, and it
would create unnecessary work for the later reverse engineering
stages. Thus, it is best to minimize the number of queries by taking
advantages of the continuous nature of UI layout: layout changes
occur incrementally, as it would otherwise confuse the user. If two
sampled layout exemplars have the same structure or their variance
matches layout behaviours we have already detected, then there
is no need to subsample further and to explore more exemplars
in the range between the sizes of these two layout exemplars. In
this case we (very likely) have already identifed all the behaviors
in this range and are unlikely to get more information by further
subsampling.

We chose to perform an adaptive grid search to sample UI layout,
as layout sampling is a two-dimensional problem. Both the width
and height of a UI are likely to afect its layout, with UIs often
assuming diferent layouts for diferent sizes and aspect ratios. We
start with the extreme window sizes (minimum and maximum)
and sample new layout sizes based on a binary grid search. We
defne the maximum size of a layout as the biggest screen size we
would like to support, and the minimum size as is defned by the
layout, i.e., the minimum size that the UI can be set to. During the
search process, if two sampled layout exemplars L1 and L2 have
the same structure or their variance matches layout behaviors we

CHI ’21, May 8–13, 2021, Yokohama, Japan

have already detected, then we stop subsampling in the window
size range between these two layout exemplars. Otherwise, we
subsample depending on their sizes. If they have the same width
but diferent heights, we subsample a layout exemplar with the
same width and the middle height of the two. Analogously, if they
have the same height but diferent widths, we subsample a layout
exemplar with the same height and the middle width of the two.
If both width and height are diferent, we subsample three layout
exemplar with 1) middle width and middle height, 2) same width
as L1 and same height as L2, and 3) same height as L1 and same
width as L2, respectively.

We show a sampling example in Figure 3, referring to the layout
exemplars as (Min), (Max), (1), (2), etc. We start with the extreme
layout sizes, i.e., the minimum size (Min) shown at the top left
and the maximum (Max) at the bottom right. According to the
subsampling rules, based on (Min) and (Max), we subsample layout
exemplars (1), (2) and (3). To minimize the number of subsampling
exemplars, we frst subsample between two exemplars with the
same height or width, and perform further subsampling along the
diagonals between exemplars only if both variations in height and
width show changes in the layout structures. For example, we
subsample layout (4) between (Max) and (1). Widget 3 disappears in
(4), so we continue to subsample between (Max) and (4) to detect the
point of its disappearance, stopping the subsampling once the size
diference between two exemplars is small. The structural diference
between (Max) and (3) is the same as the diference between (Max)
and (4), i.e., widget 3 disappears. As we have already subsampled
between (Max) and (4), we do not subsample further between (Max)
and (3). We keep subsampling until we fnd all structural diferences
of the exemplars and the approximate transition points of changes.

5 LAYOUT STRUCTURE RECONSTRUCTION
In order to compare the diferences between layouts, we aim to
reconstruct the simplest possible specifcation for the structure
of a layout exemplar. We use symbolic tabstop dividers to divide
layouts into separated parts in order to defne layout structure. Such
layout structure makes it easier to compare layouts and detect the
diferences between layouts.

5.1 Tabstops
A tabstop is an abstraction that has been introduced in previous
work on GUI layouts [21, 24, 39, 73]. It is a symbolic object in
the layout used to represent the alignments of multiple widgets.
Associated with the two dimensions of the plane, there are two
types of tabstops: x-tabstop and y-tabstop. An x-tabstop represents a
position on the x-axis and correspondingly for a y-tabstop. Tabstops
are in efect variables defning horizontal (y-tabstops) or vertical (x-
tabstops) grid lines. The combination of x-tabstops and y-tabstops
in a GUI forms a grid controlling how widgets are aligned in the
GUI. Each widget w has four tabstop variables (w .left, w .right, w .top,
w .bottom) that delimit the area it occupies. Similarly, a layout L
itself has four tabstop variables L.left, L.right, L.top and L.bottom
that defne its boundaries, which is typically called the window (or
panel) size.

The main advantage of using tabstops is that in a constraint-
based layout system, if some widgets share a boundary, can just add

Yue Jiang, Wolfgang Stuerzlinger, Christof Luteroth

a tabstop to the specifcation and then have all the corresponding
widgets refer to that tabstop instead of adding separate alignment
constraints for each widget. This approach makes it easier to main-
tain and modify the resulting constraint system. Whenever we need
to change the alignment of the widgets sharing a tabstop, we just
need to change the constraints relating to that tabstop, and then
all the corresponding widgets will be positioned accordingly. For
each layout L, we defne tabstops through two functions xtabs()
and ytabs() that map from positions in the GUI to tabstop vari-
ables in the layout: xtabs is a function mapping from x-coordinates
to x-tabstops, and ytabs mapps y-coordinates to y-tabstops (See
Appendix A for details about tabstop creation).

To guide layout reconstruction, we call a tabstop a layout divider
if it is a clean cut dividing the layout into two parts without crossing
any widget in the layout. To reconstruct the containment hierarchy
of a UI, the concept of layout dividers is applied recursively on
the sublayouts contained in a layout. For example, in Figure 4 the
orange lines are the vertical layout dividers of the overall layout, and
the green lines are horizontal layout dividers of sublayouts. Figure 5
shows two examples of subdivision results. For a horizontal layout
divider, all the widgets in the layout are either above it or below it,
and analogously for vertical layout dividers (See Appendix B for
details about tabstop layout divider detection).

5.2 Reconstruction Algorithm
Our layout structure reconstruction algorithm uses the same prin-
ciples as the XY-Cut algorithm [29, 49] but works at a higher level
of abstraction. Rather than segmenting an image based on gaps,
we consider widget boundaries directly and we remove cuts if this
allows us to simplify the X-Y structure.

We defne layout structure using Row and Column layout con-
tainers. Two widgets belong to the same Row if they are located
between the same two horizontal layout dividers, and analogously
for Column. The resulting layout structure is a nested Row and Col-
umn structure. We reconstruct the layout structure by recursively
subdividing it based on layout dividers. We try horizontal subdivi-
sion (with vertical layout dividers) frst as it is more common and
in line with reading order. If horizontal subdivision is not possible,
we process vertical subdivision analogously. We then assign the
widgets to diferent sublayouts based on the positions of the hori-
zontal layout dividers, and recursively use the reconstruction on
each sublayout structure. If both cases are impossible, which is very
rare as UIs are typically laid out using a division-based containment
hierarchy, then the layout can only be described using tabstops,
e.g., in a pinwheel layout [74] (see Appendix C for details about
layout structure construction). Figure 4 shows the visualization of
the reconstructed layout structure of the MS Word “ribbon”.

We aim to reconstruct the simplest possible layout structure.
To avoid creating layout dividers caused by accidental alignments,
we regroup widgets in multiple consecutive sublayouts and try
running the algorithm recursively to simplify the resulting layout
structure. We reconstruct the sublayout if we can get a simplifed
sublayout structure by grouping them.

ReverseORC: Reverse Engineering of Resizable User Interface Layouts with OR-Constraints CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 3: Grid subsampling example.

Figure 4: Visualization of the layout structure of the MS Word “ribbon” as reconstructed in Section 5.2. Horizontal lines are
divisors that defne Row layout containers and vertical lines defne Col(umn)s.

6 LAYOUT DIFFERENCE DETECTION
ReverseORC keeps track of diferences between neighbouring lay-
outs during the sampling process and generates corresponding
layout change sets. Based on the constructed layout structure, we
can generate a corresponding layout specifcation tree where wid-
gets are leaf nodes, and Rows and Columns are internal, non-leaf
nodes. Our layout diference detection algorithm takes two layout
trees as input and generates a set of edit operations that indicates
the diferences between the two. The set of edit operations is then
used to infer layout behaviors.

Although there are many existing diference detection algorithms
[15, 20, 68], they cannot easily be applied because UI layouts have
diferent requirements than other common tree structures such as
XML or source code. Previous tree diference detection algorithms
usually either consider none of the tree nodes to have a unique
identity, or all of the nodes to have a unique identity. However, in
the case of layouts, some tree nodes (the widgets) have a unique
identity and some have not (the layout nodes). We can observe
the widgets from the outside, e.g., through an accessibility API,
and can identify them. However, we cannot reliably identify layout
elements such as rows and columns as accessibility APIs usually
do not deliver this information; we infer their presence only by

the way the UI is structured. So in a nutshell, our diference de-
tection algorithm must be able to work with identities for some
nodes, but not others. In addition, previous diference detection
algorithms often only supported the detection of deletion, insertion,
and moving. For thoroughly analyzing and comparing layouts, we
need more edit operations, such as whether a Row has changed to
a Column. Furthermore, the computational complexity of generic
tree diference detection algorithms are often quadratic. Our lay-
out tree diference detection algorithm only takes linear time for
detecting layout diferences in practice.

6.1 Edit Operations
We defne the following edit operations that can be applied to
change a layout specifcation S1 to another specifcation S2, thus
indicating the diferences between them:

• addNode(s2): add node s2 in S2
• removeNode(s1): remove node s1 from S1
• moveNode(s1, s2): move node s1 in S1 to node s2 in S2
• replaceNode(s1, s2): replace node s1 in S1 with node s2 in S2
• changeType(s1, toType): change the type of node s1 to toType
• changeChildrenOrder(s1, toOrder): change the order of the
children of node s1 to toOrder

CHI ’21, May 8–13, 2021, Yokohama, Japan Yue Jiang, Wolfgang Stuerzlinger, Christof Luteroth

6.2 Layout Tree Data Structure
We encode a reconstructed layout structure in a corresponding
tree. Each widget becomes a leaf node, while each Row or Column
becomes an internal node. For example, Figure 5 shows the layout
tree for the reconstructed layout structure of the MS Word “ribbon”
in Figure 4. Each node stores its properties: widдetId , type , parent ,
children, pathToRoot , hashCode , and childHashCode (detailed de-
scriptions of node properties are given in Appendix D). hashCode
is defned recursively: for leaf nodes is it hash(widдetId) based on a
standard hash function, and for internal nodes it is hash(type) + 1 ×
child1.hashCode + 2 × child2.hashCode + 3 × child3.hashCode + ...,
where child1, child2, child3, etc . are children nodes of the current
node. Similarly, childHashCode is defned the same as hashCode
for leaf nodes, and as child1.hashCode XOR child2.hashCode XOR
child3.hashCode XOR ... for internal nodes. hashCode depends on
the widget identity for leaf nodes, and the structure type, children
nodes and their order for internal nodes. Thus, if two nodes in two
layout specifcations have the same hashCode , then they are identi-
cal with very high likelihood. childHashCode only depends on the
list of children of an internal node. It can be used to fnd correspond-
ing nodes even if the node type (e.g., changing from Row to Column)
or the order of children has changed. We defne two hash tables
to keep track of hashCode and childHashCode : hashMap maps the
hashCode of a node to the node itself, and childHashMap maps
from the childHashCode of a node to the node itself. When we
compare two layout specifcations, these two hash tables are used
for quickly identifying corresponding nodes in both specifcations
(See more details in Appendix D).

6.3 Diference Detection Algorithm
We detect the diferences between two layout specifcation trees
(Tree1 and Tree2) and identify edit operations by recursively com-
paring corresponding lists of sibling nodes S1 and S2, with the
corresponding lists containing child nodes of nodes that have al-
ready been determined to correspond. The basic idea is: we try
to match nodes in S2 with corresponding nodes in Tree1. When-
ever we have found a correspondence, we compare the respective
nodes and record edit operations for any diferences in position,
type, or child order. We identify the corresponding nodes in the
sibling lists and recursively apply this algorithm to the child nodes
of corresponding nodes.

We frst try to detect strong correspondences based on hash
values to fnd all the nodes s2 ∈ S2 such that there is a node
s1 ∈ Tree1 with the same hashCode or childHashCode as s2. We
then identify edit operations based on the diferences between the
corresponding nodes (for details see Appendix E). We expect most
s2 ∈ S2 to have a corresponding node s1 ∈ Tree1. Thus, after this
step, there should only be very few remaining nodes. If we cannot
fnd corresponding nodes for all the nodes s2 ∈ S2, we pair the
remaining nodes in both trees based on their similarity. We keep
pairing the remaining nodes depending on the largest number of
common leaves and recursively call the algorithm on their child
nodes (see Appendix F for layout diference detection details). For
example, in Figure 2 c, we identify move behaviors after detecting
corresponding nodes in the two layout trees and comparing the
node position diferences.

As most nodes typically can be easily paired based on their
hashCode and childHashCode , ReverseORC takes roughly linear
time to process such nodes. Very few remaining nodes need to be
paired based on similarities. Thus, the overall complexity of the
layout diference detection algorithm is linear in practice for all
GUI layouts we have tested.

7 ORC LAYOUT SPECIFICATION
GENERATION

Based on the layout diferences, ReverseORC infers layout behaviors
and constructs corresponding ORC layout specifcations, enabling
later modifcation and customization. We use a pattern matching ap-
proach to fnd ORC Layout patterns that can describe the detected
edit operations. Because layouts generally change incrementally,
the set of detected edit operations usually only contains a small
number of edit operations. These edit operations indicate the small-
est changes in the UI and thus have a clear mapping to layout
patterns, which enables us to perform precise pattern matching.

7.1 ORC Layout Pattern Matching
ORC Layout [30] is one of the most fexible layout specifcation
mechanisms that does not involve writing code. It comes with a set
of layout patterns that can be used to specify common – and also
several not so common – layout behaviours. By iterating over the
layout transitions that we identifed earlier on in the grid search, and
considering each of the change sets identifed by the tree diference
detection, we identify and record ORC Layout patterns that can
elicit the observed changes. We start with the specifcation of the
UI at its maximum size, and iterate ‘inwards’ (right and up) over
the samples and their change sets towards a UI’s minimum size, i.e.,
in a way that describes a gradual change from the maximum to the
minimum layout. For example, in the grid from Figure 3, change
sets are considered in the following order: (Max) to (4) to (1), (Max)
to (5) to (3) to (6), (3) to (8), (5) to (2) to (7) to (Min).

In each iteration, we match a layout pattern to the respective
change set and generalise the layout specifcation to include the
respective pattern. The mapping between the edit operations in
the change sets and the patterns is fairly direct, so patterns can be
found by iterating over the edit operations and testing each pattern
for applicability in a rule-based manner. If a pattern is applicable,
we adjust our ORC layout specifcation to include the respective
pattern. The most common edit operations and their associated
patterns are as follows:

removeNode(s1): If s1 is a leaf node, then s1 is an optional widget
and we change the specifcation to mark it as such (“s1 is either
there OR not”), using the current layout area (width × height) as
penalty. As a result, a widget that disappears only when the layout
gets small will have a small penalty, and the layout solver will im-
plement this expected behavior. If s1 is a non-leaf node, this could
be a knock-on efect of a fow layout with a Row or Column disap-
pearing. We therefore check whether all the children of s1 have
been moved away with corresponding moveNode operations. If that
is not the case, s2 is marked as an optional sublayout. Otherwise,
we ignore this operation as it will be handled by a diferent rule.
addNode(s2): This is the inverse case to removeNode(s1) and is han-
dled analogously. If s2 is a non-leaf node, this could be a knock-on

ReverseORC: Reverse Engineering of Resizable User Interface Layouts with OR-Constraints CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 5: Layout tree for the reconstructed layout structure of the MS Word “ribbon” in Figure 4.

efect of a fow layout with a new Row or Column appearing, so we
test this frst. moveNode(s1, s2): If one or more consecutive nodes
at the end of one Row / Column are moved to a (possibly new)
adjacent Row / Column, then we merge Rows / Columns into a
Horizontal / Vertical Flow. Otherwise, s1 has an alternative posi-
tion at the location where s2 is, and we specify this by using ORC
Layout’s alternative position pattern (“s1 is either at position 1 OR
at position 2”). replaceNode(s1, s2): s1 and s2 are alternative nodes,
so we use ORC Layout’s alternative layout pattern (“there is either
s1 OR s2 at that location”). changeType(s1, toType): s1 is marked as
a pivot sublayout as a Row has changed to a Column or vice versa
(“s1 is either a Row OR a Column”). changeChildOrder(s1, toOrder):
s1 has an alternative widget order (“the children of s1 are either
fromOrder OR toOrder”).

After we have detected a layout pattern, we use the API pro-
vided by ORC Layout [30, 31] to adjust the layout specifcation
by instantiating and adding the observed pattern. If no patterns
can be matched anymore and unmatched edit operations are still
remaining, then this means that larger parts of the layout structure
have simply been replaced by diferent layouts, e.g. as shown in
Figure 6. In this case we fnd the smallest subtree containing the
respective changes and specify the two alternatives as logical dis-
junction (“either subTree1 OR subTree2”. This is a sign of uncommon
or drastic changes in the UI, as discussed below.

For example, in Figure 1, the diference between the frst two
layouts is that the “Font” button is replaced by its expanded version.
According to the above rules, the edit operation replaceNode indi-
cates that this is an alternative layout pattern. The “Font” button
and its expanded version are alternatives. The diference between
the third and the forth layouts is that the “Styles Pane” button is
added. As it is a widget (leaf node), the edit operation addNode is
mapped to an optional widget pattern.

7.2 Visualizing Reconstructed Layout Quality
To detect potential resize issues in layouts, designers often need a
manual process to inspect the huge space of all potential device and
layout dimensions to verify that there are no problems in the layouts.

To address this challenge, we propose an error map that uses colors
to help the designer pinpoint various interface dimensions that
may be in need of improvement and/or repair. The map enables
designers to see a visual overview of specifc points in the resize
space to enable them to quickly target and repair potential areas of
concern.

We visualize the quality of the reconstructed layout in an error
map using three metrics: structural error, transition error, and “fault
lines”. The size of the error map matches the (scaled) size of the
maximum layout, and sampled layout sizes correspond to points in
the map. To defne the structural error of a layout at a certain size,
we consider the corresponding tabstops of the original layout and
the corresponding reconstructed layout. The structural error of a
layout is the sum of the squared diferences between the positions
of corresponding tabstops, divided by the number of tabstops. As
illustrated in Figures 1 and 7, the color of the error map at each
point corresponds to the structural error of the sampled layout,
with darker shades of yellow indicating larger error and linear
color gradients flled in between the sampled points.

As shown in Figure 7, beyond structural error, the error map
also visualizes the transition error (green / blue), which measures
the pixel diference between the sizes of the original and the re-
constructed layout at which a certain transition takes place (e.g.,
a widget moving onto a new row): green parts indicate that the
original GUI transitions at a larger size than the reconstructed GUI,
and blue parts indicate that the original GUI transitions at a smaller
size. For example, in the error map in Figure 7, the vertical blue
area shows the transition error between (Max) and (4). The left
boundary of the area is the transition position in the original layout
and the right one is the transition position in the reconstructed
layout. This area indicates that widget 3 disappears at a (slightly)
smaller width in the original layout than the reconstructed layout.
The vertical green area demonstrates the transition error between
(4) and (1) indicating that widget 2 refows to the next row at a
(slightly) larger width in the original layout compared to the recon-
structed layout. Analogously, the horizontal blue area shows that

CHI ’21, May 8–13, 2021, Yokohama, Japan Yue Jiang, Wolfgang Stuerzlinger, Christof Luteroth

Figure 6: Visualization of “fault lines” in the error map of a layout with ‘bad’ (i.e. potentially confusing) behaviors.

Figure 7: Visualization of reconstruction quality for the example in Figure 3 with an error map.

widget B disappears at a (slightly) smaller height in the original
layout between (Max) and (2).

To highlight layout transitions that are potentially confusing to
the user, i.e., where widgets switch positions in surprising ways,
we also identify such “fault” lines. In Figure 6 we show such a prob-
lematic layout, where the fault lines F1 and F2, which correspond
to the transitions on the left, are shown as black lines in the error
map on the right. More specifcally, we show fault lines when a)
widgets are reordered or b) larger parts of the layout structure
change, as indicated by layout alternatives that cannot be matched
to common ORC Layout patterns, i.e., where an OR needs to be
inserted between two whole sublayout alternatives. Fault lines indi-
cate transition positions that might need adjustment in the reverse
engineered specifcation. In Figure 6, we show a layout with resize
behaviors that cannot be predicted with common ORC Patterns.
Both transition positions have fault lines, which illustrate the points
where an unpredictable behavior occurs and where the layout could
potentially be improved. Thus, designers could use fault lines as
guides to identify and fx bad layout behaviours, e.g., by modifying
the generated ORC layout specifcation. For example, this layout
could be changed to a horizontal fow layout to exhibit better resize
behavior.

8 APPLICATIONS
It is often time-consuming for designers to create new resizable UIs
from scratch. Sometimes a designer might fnd a UI that is similar
to what they are looking for. ReverseORC can help designers to
reconstruct ORC Layout specifcations for existing UIs and then
use those specifcations in other applications and on other plat-
forms. In the following, we briefy discuss this for the MS Word
“ribbon” GUI and the BBC News website, which both use highly
dynamic layouts. Furthermore, we briefy discuss how ReverseORC

can help designers to modify, extend and even create resizable GUIs
by example.

8.1 GUI Reverse Engineering – MS Word
Ribbon

ReverseORC can be used on dynamic, hand-coded GUI layouts,
such as the well-known MS Word “ribbon” toolbar. In Figure 1, we
present our reverse engineering result for the “ribbon”. The yellow
lines in the original UI samples on the left illustrate the layout
structure results of each sample. The edit operations detected for
the transitions between them are shown with blue arrows. On the
right, the corresponding reconstructed UI with its ORC Layout
patterns are shown, exhibiting the same layout behaviours as the
original.

8.2 Web UI Reverse Engineering – BBC News
ReverseORC enables moving layouts across platforms. Designers
may want to replicate a web layout in a mobile app or vice versa.
As our system is platform and framework independent, this means
that a layout can be re-used in another form of applications, as we
can unify diferent layouts by reverse engineering. For example,
we can reverse engineer GUI layouts for the web, and web layouts
for GUIs. As a demonstration of this, Figure 8 shows the reverse
engineering result for the BBC News website into a GUI environ-
ment, which opens up options for cross-platform applications. Our
method works well for webpages that have well-defned and rea-
sonably predictable layout methods, but we cannot claim that our
method works well for all layout methods that exist on the web.
Consider for example a tiled layout that rearranges tiles randomly
upon a resize. In this case, ReverseORC creates a very large layout
specifcation that contains many OR clauses.

ReverseORC: Reverse Engineering of Resizable User Interface Layouts with OR-Constraints CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 8: Reverse engineering result for the BBC News website, displayed as an ORC Layout GUI. One Horizontal Flow pattern
was omitted in the fgure for space reasons.

8.3 Exemplar-Based Layout Design
The layout diference detection and ORC layout pattern matching
parts of ReverseORC can be used to reverse engineer desired layout
behaviors and generate resizable GUIs based on examples, e.g.,
multiple diferent sizes of a static GUI layout drawn by a visual
designer. Given multiple such static GUI layouts drawn by a visual
designer for diferent window sizes, ReverseORC detects layout
diferences among the static exemplar layouts and infers an ORC
layout that matches the drawn layout results and the designer’s
intention (Figure 9).

If the results do not match the designer’s expectations, they can
iteratively draw new exemplars, or change their existing exemplars,
and ReverseORC’s diference detection will pick up the diferences
and change the layout specifcation accordingly. This can be used,

for example, to disambiguate some layout behaviors by providing
more examples, or add extra transitions for a smoother resize be-
haviour. The designer could pick a respective size by clicking on
the error map, and then modify or replace the UI for the chosen
size in a UI builder-like interface.

Similarly, manual exemplars can be combined with exemplars
that are sampled automatically. For example, in Figure 1, the tran-
sition at the fault line between layout four and fve rearranges
two sublayouts in a fairly arbitrary manner to use available width.
Upon seeing the fault line, a designer could manually re-draw lay-
out fve, e.g. in a manner that re-arranges the widgets according
to a fow layout. ReverseORC would then create a Flow pattern for
the transition and the fault line would disappear.

CHI ’21, May 8–13, 2021, Yokohama, Japan Yue Jiang, Wolfgang Stuerzlinger, Christof Luteroth

Figure 9: Given multiple diferent sizes of a static GUI layout drawn by a visual designer, ReverseORC can generate an ORC
layout specifcation based on the patterns inferred from the drawn layout results. The two fgures on the right show the results
of resizing the GUI reconstructed from the left two window sizes.

9 DISCUSSION
ReverseORC is an implementation- and platform-independent re-
verse engineering approach to detect layout behaviors and types
and to generate a matching high-level ORC Layout specifcation for
a given layout. It enables the creation of responsive, fexible layouts
for existing and new applications. ReverseORC is an efcient tool;
it took only about 0.4 seconds to reverse engineer the MS word
“Ribbon” toolbar and about 0.5 second for the BBC News website
on an average laptop computer. It can be used as part of the design
process for making existing UIs more fexible, to fx problems in
existing GUIs, and in developing completely new GUIs. In efect, we
can deal with most layout methods, including fow, grid, grid-bag,
and ORC layouts. One caveat is that we currently cannot recon-
struct some of the numerical parameters infuencing a layout, such
as the weights in grid-bag layouts and their ability to center content.
This is a topic for future work.

Developers interact with ReverseORC by editing UI exemplars
(Section 8.3). Such editing of a UI’s appearance has been well stud-
ied [60, 73] and found to be developer-friendly, especially when
compared to specifying interactive behaviors directly [46]. Similar
to Expresso [33], ReverseORC developers also specify UI exemplars
simply by dragging and resizing elements, and this was already
demonstrated to be easy and useful by Expresso. The usefulness of
the resulting ORC specifcations has been validated in [30, 31].

A drawback of using accessibility APIs to extract widget informa-
tion is that in some applications, not all the widgets might provide
accessibility APIs. Hybrid techniques combining pixel-based meth-
ods and accessibility API could further improve the accuracy of
widget detection [27]. For websites, sampling is predominantly a
one-dimensional problem as window widths are much more im-
portant. Due to the afordance of vertical scrolling, heights are
relatively less relevant. Thus, instead of a binary grid search, a

simpler approach for website layouts might be to sample diferent
widths through a one-dimensional binary interval search.

If the designer or the implementer of a layout manager made a
severe mistake when a GUI was designed, which causes unexpected
widget placement to occur in a layout, e.g., an optional widget that
“fickers in and out” during resizing, then our framework will typ-
ically create many alternative patterns – since our ReverseORC
approach can only detect known layout types and patterns. While
this is a fundamental limitation of our approach, it is not an algo-
rithmic one, as we are in this case not dealing with well-defned
layout behaviors. On other other hand, our approach could also be
used as a sanity test for layouts to detect bugs and/or unexpected
behaviors, as fault lines would appear in the error map for many
such behaviors. The user can then use the results of our algorithm to
replace unexpected behaviors in the layout with more deterministic
and predictable patterns.

10 CONCLUSION AND FUTURE WORK
We presented ReverseORC, a novel layout reverse engineering
method that reconstructs layout specifcations for existing UIs,
considering not only the static structure of the original but also
its dynamic resize behaviors. By sampling layout sizes with a
binary grid search, ReverseORC detects topological diferences
between layouts of diferent sizes, further infers layout behav-
iors, and generates a corresponding ORC Layout specifcation
to enable layout customization and generation of new UIs. To
our knowledge, ReverseORC is the frst approach for reverse en-
gineering dynamic resizable layouts and generating a platform
independent high-level layout specifcation for them. We envi-
sion that our method could be widely applied in various appli-
cations and platforms. ReverseORC is available as open source from
https://github.com/YueJiang-nj/ReverseORC-CHI2021.

https://github.com/YueJiang-nj/ReverseORC-CHI2021

ReverseORC: Reverse Engineering of Resizable User Interface Layouts with OR-Constraints

REFERENCES
[1] Robert St Amant, Mark O Riedl, Frank E Ritter, and Andrew Reifers. 2005. Im-

age Processing in Cognitive Models with SegMan. In Proceedings of the 11th
International Conference on Human-Computer Interaction, HCII, Vol. 2005.

[2] Pavol Bielik, Marc Fischer, and Martin Vechev. 2018. Robust Relational Layout
Synthesis from Examples for Android. Proc. ACM Program. Lang. 2, OOPSLA,
Article 156 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276526

[3] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C. Miller.
2005. Automation and Customization of Rendered Web Pages. In Proceedings
of the 18th Annual ACM Symposium on User Interface Software and Technology
(Seattle, WA, USA) (UIST ’05). Association for Computing Machinery, New York,
NY, USA, 163–172. https://doi.org/10.1145/1095034.1095062

[4] Alan Borning, Richard Kuang-Hsu Lin, and Kim Marriott. 2000. Constraint-based
document layout for the Web. Multimedia systems 8, 3 (2000), 177–189.

[5] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. 2003. VIPS: a Vision-
based Page Segmentation Algorithm. Technical Report MSR-TR-2003-79. 28
pages. https://www.microsoft.com/en-us/research/publication/vips-a-vision-
based-page-segmentation-algorithm/

[6] Tsung-Hsiang Chang, Tom Yeh, and Robert C. Miller. 2010. GUI Testing Using
Computer Vision. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Atlanta, Georgia, USA) (CHI ’10). Association for Computing
Machinery, New York, NY, USA, 1535–1544. https://doi.org/10.1145/1753326.
1753555

[7] Yu Chen, Xing Xie, Wei-Ying Ma, and Hong-Jiang Zhang. 2005. Adapting web
pages for small-screen devices. IEEE internet computing 9, 1 (2005), 50–56.

[8] Morgan Dixon and James Fogarty. 2010. Prefab: Implementing Advanced Behav-
iors Using Pixel-Based Reverse Engineering of Interface Structure. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Atlanta, Geor-
gia, USA) (CHI ’10). Association for Computing Machinery, New York, NY, USA,
1525–1534. https://doi.org/10.1145/1753326.1753554

[9] Morgan Dixon, James Fogarty, and Jacob Wobbrock. 2012. A General-Purpose
Target-Aware Pointing Enhancement Using Pixel-Level Analysis of Graphical
Interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Austin, Texas, USA) (CHI ’12). Association for Computing Machinery,
New York, NY, USA, 3167–3176. https://doi.org/10.1145/2207676.2208734

[10] Morgan Dixon, Gierad Laput, and James Fogarty. 2014. Pixel-Based Methods
for Widget State and Style in a Runtime Implementation of Sliding Widgets. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Toronto, Ontario, Canada) (CHI ’14). Association for Computing Machinery,
New York, NY, USA, 2231–2240. https://doi.org/10.1145/2556288.2556979

[11] Morgan Dixon, Daniel Leventhal, and James Fogarty. 2011. Content and Hier-
archy in Pixel-Based Methods for Reverse Engineering Interface Structure. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Vancouver, BC, Canada) (CHI ’11). Association for Computing Machinery, New
York, NY, USA, 969–978. https://doi.org/10.1145/1978942.1979086

[12] Morgan Dixon, Alexander Nied, and James Fogarty. 2014. Prefab Layers and
Prefab Annotations: Extensible Pixel-Based Interpretation of Graphical Interfaces.
In Proceedings of the 27th Annual ACM Symposium on User Interface Software and
Technology (Honolulu, Hawaii, USA) (UIST ’14). Association for Computing Ma-
chinery, New York, NY, USA, 221–230. https://doi.org/10.1145/2642918.2647412

[13] Carmel Domshlak, Samir Genaim, and Ronen Brafman. 2000. Preference-based
confguration of web page content. In 14th European Conference on Artifcial
Intelligence (ECAI 2000), Confguration Workshop, Berlin, Germany. 19–22.

[14] W. Keith Edwards, Scott E. Hudson, Joshua Marinacci, Roy Rodenstein, Thomas
Rodriguez, and Ian Smith. 1997. Systematic Output Modifcation in a 2D User
Interface Toolkit. In Proceedings of the 10th Annual ACM Symposium on User
Interface Software and Technology (Banf, Alberta, Canada) (UIST ’97). Association
for Computing Machinery, New York, NY, USA, 151–158. https://doi.org/10.
1145/263407.263537

[15] Jan P Finis, Martin Raiber, Nikolaus Augsten, Robert Brunel, Alfons Kemper, and
Franz Färber. 2013. Rws-dif: fexible and efcient change detection in hierarchical
data. In Proceedings of the 22nd ACM international conference on Information &
Knowledge Management. 339–348.

[16] Jun Fujima, Aran Lunzer, Kasper Hornbæk, and Yuzuru Tanaka. 2004. Clip,
Connect, Clone: Combining Application Elements to Build Custom Interfaces for
Information Access. In Proceedings of the 17th Annual ACM Symposium on User
Interface Software and Technology (Santa Fe, NM, USA) (UIST ’04). Association for
Computing Machinery, New York, NY, USA, 175–184. https://doi.org/10.1145/
1029632.1029664

[17] John Gerdes. 2009. User Interface Migration of Microsoft Windows Applications.
Journal of Software Maintenance 21 (05 2009), 171–187. https://doi.org/10.1002/
smr.400

[18] Saul Greenberg and Bill Buxton. 2008. Usability Evaluation Considered Harmful
(Some of the Time). In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Florence, Italy) (CHI ’08). Association for Computing Ma-
chinery, New York, NY, USA, 111–120. https://doi.org/10.1145/1357054.1357074

CHI ’21, May 8–13, 2021, Yokohama, Japan

[19] Björn Hartmann, Leslie Wu, Kevin Collins, and Scott R. Klemmer. 2007. Program-
ming by a Sample: Rapidly Creating Web Applications with d.Mix. In Proceedings
of the 20th Annual ACM Symposium on User Interface Software and Technology
(Newport, Rhode Island, USA) (UIST ’07). Association for Computing Machinery,
New York, NY, USA, 241–250. https://doi.org/10.1145/1294211.1294254

[20] Masatomo Hashimoto and Akira Mori. 2008. Dif/TS: A tool for fne-grained
structural change analysis. In 2008 15th working conference on reverse engineering.
IEEE, 279–288.

[21] Osamu Hashimoto and Brad A. Myers. 1992. Graphical Styles for Building
Interfaces by Demonstration. In Proceedings of the 5th Annual ACM Symposium
on User Interface Software and Technology (Monteray, California, USA) (UIST ’92).
Association for Computing Machinery, New York, NY, USA, 117–124. https:
//doi.org/10.1145/142621.142635

[22] Hiroshi Hosobe. 2005. Solving Linear and One-Way Constraints for Web Docu-
ment Layout. In Proceedings of the 2005 ACM Symposium on Applied Computing
(Santa Fe, New Mexico) (SAC ’05). Association for Computing Machinery, New
York, NY, USA, 1252–1253. https://doi.org/10.1145/1066677.1066959

[23] Scott E. Hudson, Jennifer Mankof, and Ian Smith. 2005. Extensible Input Handling
in the SubArctic Toolkit. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Portland, Oregon, USA) (CHI ’05). Association for
Computing Machinery, New York, NY, USA, 381–390. https://doi.org/10.1145/
1054972.1055025

[24] Scott E. Hudson and Shamim P. Mohamed. 1990. Interactive Specifcation of
Flexible User Interface Displays. ACM Trans. Inf. Syst. 8, 3 (July 1990), 269–288.
https://doi.org/10.1145/98188.98201

[25] Scott E. Hudson and Ian Smith. 1997. Supporting Dynamic Downloadable Ap-
pearances in an Extensible User Interface Toolkit. In Proceedings of the 10th
Annual ACM Symposium on User Interface Software and Technology (Banf, Al-
berta, Canada) (UIST ’97). Association for Computing Machinery, New York, NY,
USA, 159–168. https://doi.org/10.1145/263407.263539

[26] Scott E. Hudson and Kenichiro Tanaka. 2000. Providing Visually Rich Resizable
Images for User Interface Components. In Proceedings of the 13th Annual ACM
Symposium on User Interface Software and Technology (San Diego, California,
USA) (UIST ’00). Association for Computing Machinery, New York, NY, USA,
227–235. https://doi.org/10.1145/354401.354783

[27] Amy Hurst, Scott E. Hudson, and Jennifer Mankof. 2010. Automatically Identi-
fying Targets Users Interact with during Real World Tasks. In Proceedings of the
15th International Conference on Intelligent User Interfaces (Hong Kong, China)
(IUI ’10). Association for Computing Machinery, New York, NY, USA, 11–20.
https://doi.org/10.1145/1719970.1719973

[28] Dugald Ralph Hutchings and John Stasko. 2005. Mudibo: Multiple Dialog Boxes
for Multiple Monitors. In CHI ’05 Extended Abstracts on Human Factors in Comput-
ing Systems (Portland, OR, USA) (CHI EA ’05). Association for Computing Machin-
ery, New York, NY, USA, 1471–1474. https://doi.org/10.1145/1056808.1056944

[29] Jaekyu Ha, R. M. Haralick, and I. T. Phillips. 1995. Recursive X-Y cut using
bounding boxes of connected components. In Proceedings of 3rd International
Conference on Document Analysis and Recognition, Vol. 2. 952–955 vol.2. https:
//doi.org/10.1109/ICDAR.1995.602059

[30] Yue Jiang, Ruofei Du, Christof Lutteroth, and Wolfgang Stuerzlinger. 2019. ORC
Layout: Adaptive GUI Layout with OR-Constraints. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). Association for Computing Machinery, New York, NY, USA, Article
413, 12 pages. https://doi.org/10.1145/3290605.3300643

[31] Yue Jiang, Wolfgang Stuerzlinger, Matthias Zwicker, and Christof Lutteroth. 2020.
ORCSolver: An Efcient Solver for Adaptive GUI Layout with OR-Constraints. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York,
NY, USA, 1–14. https://doi.org/10.1145/3313831.3376610

[32] Solange Karsenty, James A. Landay, and Chris Weikart. 1993. Inferring Graphical
Constraints With Rockit. In Proceedings of the Conference on People and Computers
VII (York, United Kingdom) (HCI’92). Cambridge University Press, 137–153. https:
//doi.org/10.1007/3-540-58601-_91

[33] R. Krosnick, S. W. Lee, W. S. Laseck, and S. Onev. 2018. Expresso: Building
Responsive Interfaces with Keyframes. In 2018 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). 39–47. https://doi.org/10.1109/
VLHCC.2018.8506516

[34] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. 2008. CoScripter:
Automating & Sharing How-to Knowledge in the Enterprise. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (Florence, Italy)
(CHI ’08). Association for Computing Machinery, New York, NY, USA, 1719–1728.
https://doi.org/10.1145/1357054.1357323

[35] James Lin, Jefrey Wong, Jefrey Nichols, Allen Cypher, and Tessa A. Lau. 2009.
End-User Programming of Mashups with Vegemite. In Proceedings of the 14th
International Conference on Intelligent User Interfaces (Sanibel Island, Florida, USA)
(IUI ’09). Association for Computing Machinery, New York, NY, USA, 97–106.
https://doi.org/10.1145/1502650.1502667

[36] Greg Little, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, and Eser Kan-
dogan. 2007. Koala: Capture, Share, Automate, Personalize Business Processes on

https://doi.org/10.1145/3276526
https://doi.org/10.1145/1095034.1095062
https://www.microsoft.com/en-us/research/publication/vips-a-vision-based-page-segmentation-algorithm/
https://www.microsoft.com/en-us/research/publication/vips-a-vision-based-page-segmentation-algorithm/
https://doi.org/10.1145/1753326.1753555
https://doi.org/10.1145/1753326.1753555
https://doi.org/10.1145/1753326.1753554
https://doi.org/10.1145/2207676.2208734
https://doi.org/10.1145/2556288.2556979
https://doi.org/10.1145/1978942.1979086
https://doi.org/10.1145/2642918.2647412
https://doi.org/10.1145/263407.263537
https://doi.org/10.1145/263407.263537
https://doi.org/10.1145/1029632.1029664
https://doi.org/10.1145/1029632.1029664
https://doi.org/10.1002/smr.400
https://doi.org/10.1002/smr.400
https://doi.org/10.1145/1357054.1357074
https://doi.org/10.1145/1294211.1294254
https://doi.org/10.1145/142621.142635
https://doi.org/10.1145/142621.142635
https://doi.org/10.1145/1066677.1066959
https://doi.org/10.1145/1054972.1055025
https://doi.org/10.1145/1054972.1055025
https://doi.org/10.1145/98188.98201
https://doi.org/10.1145/263407.263539
https://doi.org/10.1145/354401.354783
https://doi.org/10.1145/1719970.1719973
https://doi.org/10.1145/1056808.1056944
https://doi.org/10.1109/ICDAR.1995.602059
https://doi.org/10.1109/ICDAR.1995.602059
https://doi.org/10.1145/3290605.3300643
https://doi.org/10.1145/3313831.3376610
https://doi.org/10.1007/3-540-58601-_91
https://doi.org/10.1007/3-540-58601-_91
https://doi.org/10.1109/VLHCC.2018.8506516
https://doi.org/10.1109/VLHCC.2018.8506516
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/1502650.1502667

CHI ’21, May 8–13, 2021, Yokohama, Japan Yue Jiang, Wolfgang Stuerzlinger, Christof Luteroth

the Web. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (San Jose, California, USA) (CHI ’07). Association for Computing Ma-
chinery, New York, NY, USA, 943–946. https://doi.org/10.1145/1240624.1240767

[37] Christof Lutteroth. 2008. Automated Reverse Engineering of Hard-Coded GUI
Layouts. In Proceedings of the Ninth Conference on Australasian User Interface -
Volume 76 (Wollongong, Australia) (AUIC ’08). Australian Computer Society, Inc.,
AUS, 65–73. https://doi.org/10.5555/1378337.1378350

[38] Christof Lutteroth, Robert Strandh, and Gerald Weber. 2008. Domain specifc
high-level constraints for user interface layout. Constraints 13, 3 (2008), 307–342.

[39] Christof Lutteroth and Gerald Weber. 2006. User Interface Layout with Ordinal
and Linear Constraints. In Proceedings of the 7th Australasian User Interface
Conference - Volume 50 (Hobart, Australia) (AUIC ’06). Australian Computer
Society, Inc., AUS, 53–60. https://doi.org/10.5555/1151758.1151764

[40] Ethan Marcotte. 2011. Responsive Web Design. A book apart.
[41] Melody Moore and Spencer Rugaber. 1997. Using Knowledge Representation to

Understand Interactive Systems. In Proceedings of the 5th International Workshop
on Program Comprehension (WPC ’97) (WPC ’97). IEEE Computer Society, USA,
60.

[42] Melody M. Moore. 1996. Rule-Based Detection for Reverse Engineering User
Interfaces. In Proceedings of the 3rd Working Conference on Reverse Engineering
(WCRE ’96) (WCRE ’96). IEEE Computer Society, USA, 42.

[43] Melody Marie Moore, James D. Foley, and Spencer Rugaber. 1998. User Interface
Reengineering. Ph.D. Dissertation. USA. AAI9918460.

[44] Melody M. Moore and Lilia Moshkina. 2000. Migrating Legacy User Interfaces to
the Internet: Shifting Dialogue Initiative. In Proceedings of the Seventh Working
Conference on Reverse Engineering (WCRE’00) (WCRE ’00). IEEE Computer Society,
USA, 52.

[45] Brad Myers, Scott E. Hudson, and Randy Pausch. 2000. Past, Present, and Future
of User Interface Software Tools. ACM Trans. Comput.-Hum. Interact. 7, 1 (March
2000), 3–28. https://doi.org/10.1145/344949.344959

[46] Brad Myers, Sun Young Park, Yoko Nakano, Greg Mueller, and Amy Ko. 2008. How
designers design and program interactive behaviors. In 2008 IEEE Symposium on
Visual Languages and Human-Centric Computing. IEEE, 177–184.

[47] Brad A. Myers. 1995. User Interface Software Tools. ACM Trans. Comput.-Hum.
Interact. 2, 1 (March 1995), 64–103. https://doi.org/10.1145/200968.200971

[48] Brad A. Myers, Richard G. Mcdaniel, Robert C. Miller, Alan S. Ferrency, Andrew
Faulring, Bruce D. Kyle, Ieee Computer Society, Ieee Computer Society, Andrew
Mickish, Alex Klimovitski, and Patrick Doane. 1997. The Amulet Environment:
New Models for Efective User Interface Software Development. IEEE Transactions
on Software Engineering 23 (1997), 347–365.

[49] George Nagy and Sharad C Seth. 1984. Hierarchical representation of optically
scanned documents. (1984).

[50] Tuan Anh Nguyen and Christoph Csallner. 2015. Reverse Engineering Mobile
Application User Interfaces with REMAUI. In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering (Lincoln, Nebraska)
(ASE ’15). IEEE Press, 248–259. https://doi.org/10.1109/ASE.2015.32

[51] Jefrey Nichols and Tessa Lau. 2008. Mobilization by Demonstration: Using
Traces to Re-Author Existing Web Sites. In Proceedings of the 13th Interna-
tional Conference on Intelligent User Interfaces (Gran Canaria, Spain) (IUI ’08).
Association for Computing Machinery, New York, NY, USA, 149–158. https:
//doi.org/10.1145/1378773.1378793

[52] Dan R. Olsen. 2007. Evaluating User Interface Systems Research. In Proceedings
of the 20th Annual ACM Symposium on User Interface Software and Technology
(Newport, Rhode Island, USA) (UIST ’07). Association for Computing Machinery,
New York, NY, USA, 251–258. https://doi.org/10.1145/1294211.1294256

[53] Dan R. Olsen, Scott E. Hudson, Thom Verratti, Jeremy M. Heiner, and Matt Phelps.
1999. Implementing Interface Attachments Based on Surface Representations. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Pittsburgh, Pennsylvania, USA) (CHI ’99). Association for Computing Machinery,
New York, NY, USA, 191–198. https://doi.org/10.1145/302979.303038

[54] Dan R. Olsen, Trent Taufer, and Jerry Alan Fails. 2004. ScreenCrayons: An-
notating Anything. In Proceedings of the 17th Annual ACM Symposium on
User Interface Software and Technology (Santa Fe, NM, USA) (UIST ’04). As-
sociation for Computing Machinery, New York, NY, USA, 165–174. https:
//doi.org/10.1145/1029632.1029663

[55] Richard L Potter. 1992. Triggers: Guiding Automation with Pixels to Achieve
Data Access. University of Maryland, Center for Automation Research, Hu-
man/Computer Interaction Laboratory.

[56] Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, and Jesús García Molina. 2014.
Model-driven reverse engineering of legacy graphical user interfaces. Automated
Software Engineering 21, 2 (2014), 147–186.

[57] Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina, and Jean
Vanderdonckt. 2016. A layout inference algorithm for Graphical User Interfaces.
Information and Software Technology 70 (2016), 155–175.

[58] Alireza Sahami Shirazi, Niels Henze, Albrecht Schmidt, Robin Goldberg, Benjamin
Schmidt, and Hansjörg Schmauder. 2013. Insights Into Layout Patterns of Mobile
User Interfaces by an Automatic Analysis of Android Apps. In Proceedings of

the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(London, United Kingdom) (EICS ’13). ACM, Gothenburg, Sweden, 275–284. https:
//doi.org/10.1145/3197231.3197249

[59] Óscar Sánchez Ram ón, Jesús Sánchez Cuadrado, and Jesús García Molina. 2010.
Model-Driven Reverse Engineering of Legacy Graphical User Interfaces. In Pro-
ceedings of the IEEE/ACM International Conference on Automated Software Engi-
neering (Antwerp, Belgium) (ASE ’10). Association for Computing Machinery,
New York, NY, USA, 147–150. https://doi.org/10.1145/1858996.1859023

[60] Adriano Scoditti and Wolfgang Stuerzlinger. 2009. A New Layout Method for
Graphical User Interfaces. In Science and Technology for Humanity (TIC-STH),
2009 IEEE Toronto International Conference. IEEE, 642–647. https://doi.org/10.
1016/j.infsof.2015.10.005

[61] Robert St. Amant, Henry Lieberman, Richard Potter, and Luke Zettlemoyer. 2000.
Programming by Example: Visual Generalization in Programming by Example.
Commun. ACM 43, 3 (March 2000), 107–114. https://doi.org/10.1145/330534.
330549

[62] Stefan Staiger. 2007. Static Analysis of Programs with Graphical User Interface. In
11th European Conference on Software Maintenance and Reengineering (CSMR’07).
252–264. https://doi.org/10.1109/CSMR.2007.44

[63] E. Stroulia, M. El-Ramly, P. Iglinski, and P. Sorenson. 2003. User Interface Reverse
Engineering in Support of Interface Migration to the Web. Automated Software
Engg. 10, 3 (July 2003), 271–301. https://doi.org/10.1023/A:1024460315173

[64] Wolfgang Stuerzlinger, Olivier Chapuis, Dusty Phillips, and Nicolas Roussel. 2006.
User Interface Façades: Towards Fully Adaptable User Interfaces. In Proceedings
of the 19th Annual ACM Symposium on User Interface Software and Technology
(Montreux, Switzerland) (UIST ’06). Association for Computing Machinery, New
York, NY, USA, 309–318. https://doi.org/10.1145/1166253.1166301

[65] Amanda Swearngin, Amy J. Ko, and James Fogarty. 2017. Genie: Input Retargeting
on the Web through Command Reverse Engineering. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 4703–4714.
https://doi.org/10.1145/3025453.3025506

[66] Desney S. Tan, Brian Meyers, and Mary Czerwinski. 2004. WinCuts: Manipulating
Arbitrary Window Regions for More Efective Use of Screen Space. In CHI ’04
Extended Abstracts on Human Factors in Computing Systems (Vienna, Austria) (CHI
EA ’04). Association for Computing Machinery, New York, NY, USA, 1525–1528.
https://doi.org/10.1145/985921.986106

[67] J. Vanderdonckt, L. Bouillon, and N. Souchon. 2001. Flexible Reverse Engineering
of Web Pages with VAQUISTA. In Proceedings Eighth Working Conference on
Reverse Engineering. 241–248. https://doi.org/10.1109/WCRE.2001.957828

[68] Yuan Wang, David J DeWitt, and J-Y Cai. 2003. X-Dif: An efective change detec-
tion algorithm for XML documents. In Proceedings 19th international conference
on data engineering (Cat. No. 03CH37405). IEEE, 519–530.

[69] Gerald Weber. 2010. A Reduction of Grid-Bag Layout to Auckland Layout. In
Proceedings of the 2010 21st Australian Software Engineering Conference (ASWEC
’10). IEEE Computer Society, 67–74. https://doi.org/10.1109/ASWEC.2010.38

[70] Xing Xie, Chong Wang, Li-Qun Chen, and Wei-Ying Ma. 2005. An adaptive web
page layout structure for small devices. Multimedia Systems 11, 1 (2005), 34–44.

[71] Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. 2009. Sikuli: Using GUI
Screenshots for Search and Automation. In Proceedings of the 22nd Annual ACM
Symposium on User Interface Software and Technology (Victoria, BC, Canada)
(UIST ’09). Association for Computing Machinery, New York, NY, USA, 183–192.
https://doi.org/10.1145/1622176.1622213

[72] Brad Vander Zanden and Brad A. Myers. 1990. Automatic, Look-and-Feel Indepen-
dent Dialog Creation for Graphical User Interfaces. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Seattle, Washington, USA)
(CHI ’90). ACM, Seattle, Washington, USA, 27–34. https://doi.org/10.1007/978-3-
319-67744-_2

[73] Clemens Zeidler, Christof Lutteroth, Gerald Weber, and Wolfgang Stürzlinger.
2012. The Auckland Layout Editor: An Improved GUI Layout Specifcation
Process. In Proceedings of the 13th International Conference of the NZ Chapter
of the ACM’s Special Interest Group on Human-Computer Interaction (Dunedin,
New Zealand) (CHINZ ’12). Association for Computing Machinery, New York,
NY, USA, 103. https://doi.org/10.1145/2379256.2379287

[74] C. Zeidler, G. Weber, A. Gavryushkin, and Christof Lutteroth. 2017. Tiling algebra
for constraint-based layout editing. J. Log. Algebraic Methods Program. 89 (2017),
67–94.

[75] Luke S. Zettlemoyer and Robert St. Amant. 1999. A Visual Medium for Pro-
grammatic Control of Interactive Applications. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Pittsburgh, Pennsylvania,
USA) (CHI ’99). Association for Computing Machinery, New York, NY, USA,
199–206. https://doi.org/10.1145/302979.303039

[76] Luke S. Zettlemoyer, Robert St. Amant, and Martin S. Dulberg. 1998. IBOTS:
Agent Control through the User Interface. In Proceedings of the 4th International
Conference on Intelligent User Interfaces (Los Angeles, California, USA) (IUI ’99).
Association for Computing Machinery, New York, NY, USA, 31–37. https://doi.
org/10.1145/291080.291087

https://doi.org/10.1145/1240624.1240767
https://doi.org/10.5555/1378337.1378350
https://doi.org/10.5555/1151758.1151764
https://doi.org/10.1145/344949.344959
https://doi.org/10.1145/200968.200971
https://doi.org/10.1109/ASE.2015.32
https://doi.org/10.1145/1378773.1378793
https://doi.org/10.1145/1378773.1378793
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/302979.303038
https://doi.org/10.1145/1029632.1029663
https://doi.org/10.1145/1029632.1029663
https://doi.org/10.1145/3197231.3197249
https://doi.org/10.1145/3197231.3197249
https://doi.org/10.1145/1858996.1859023
https://doi.org/10.1016/j.infsof.2015.10.005
https://doi.org/10.1016/j.infsof.2015.10.005
https://doi.org/10.1145/330534.330549
https://doi.org/10.1145/330534.330549
https://doi.org/10.1109/CSMR.2007.44
https://doi.org/10.1023/A:1024460315173
https://doi.org/10.1145/1166253.1166301
https://doi.org/10.1145/3025453.3025506
https://doi.org/10.1145/985921.986106
https://doi.org/10.1109/WCRE.2001.957828
https://doi.org/10.1109/ASWEC.2010.38
https://doi.org/10.1145/1622176.1622213
https://doi.org/10.1007/978-3-319-67744-_2
https://doi.org/10.1007/978-3-319-67744-_2
https://doi.org/10.1145/2379256.2379287
https://doi.org/10.1145/302979.303039
https://doi.org/10.1145/291080.291087
https://doi.org/10.1145/291080.291087

ReverseORC: Reverse Engineering of Resizable User Interface Layouts with OR-Constraints

Algorithm 1: Tabstop Creation

1 Function TabstopCreation(L)
2 xtabs : (Z → X-Tabstop) = {0 7→ L.leftTab, L.width 7→

L.riдhtTab}
3 ytabs : (Z → Y-Tabstop) = {0 7→ L.topTab, L.heiдht 7→

L.bottomTab}
4 for w ∈ L.Widgets do
5 if w .left ∈ Domain(xtabs) then
6 w .leftTab ← xtabs(w .left)
7 end
8 else
9 xtabs ← xtabs ∪ {w .left 7→ w .leftTab}

10 end
11 Process right, top, bottom tabstops analogously.
12 end
13 return xtabs , ytabs
14 end

A TABSTOP CREATION
For each layout L, we defne tabstops through two functions xtabs()
and ytabs() that map from positions in the GUI to tabstop variables
in the layout (Algorithm 1). We defne xtabs as a function mapping
from x-coordinates to x-tabstops. Initially, it contains two elements
that map the leftmost x-position in the GUI to the left tabstop
variable of the layout and correspondingly for the right (Line 2).
ytabs is the analogous mapping for y-coordinates to y-tabstops
(Line 3).

Line 4-12 show how we loop through all the widgets in the GUI
to create mappings to the two tabstop functions xtabs and ytabs .
We check if the x-coordinate of the current widget’s left boundary
w .left is contained in the domain of xtabs, i.e., this x-coordinate
w .left is already mapped to an existing x-tabstop in the function
xtabs (Line 5). In practice, there might be some small displacements
in the layout. For example, a widget might be displaced by a pixel
due to a rounding error. Then it is unreasonable to add two tabstops
with a one-pixel distance in between. Thus, instead of checking
whether w .left is in the domain of the function xtabs , we can check
whether there exists an x-coordinate xpos in xtabs that is within a
tolerance value ϵ . If so, we map w .leftTab to xtabs(w .le f t) to elim-
inate near-duplicate tabstop variables and near-identical mappings
in the function xtabs (Line 6). If w .left could not be mapped to a tab-
stop variable in the function xtabs , then we insert a new mapping
from the x-coordinate w .left to the tabstop variable w .leftTab (Line
9). We process all three other boundaries of each widget (right, top,
bottom) analogously.

In the end, the algorithm yields the fnal xtabs and ytabs func-
tions. Also, we now have four unique tabstop variables for each
widget in the layout.

B TABSTOP LAYOUT DIVIDERS
We defne a tabstop as a tabstop layout divider if it is a clean cut
dividing the layout into two parts where the tabstop does not cross
any widget in the layout. For a horizontal tabstop layout divider,

CHI ’21, May 8–13, 2021, Yokohama, Japan

Algorithm 2: Tabstop Layout Dividers
1 Function GetTabstopLayoutDividers(tabs, widgets, xy)
2 tabValues ← sorted(tabs .keys())[1 : −1]
3 tabstopLayoutDividers ← []
4 for tabValue ∈ tabValues do
5 divideLayout ← True
6 for w ∈ widдets do
7 if xy == ”x” then
8 minBoundary ← w .le f t
9 maxBoundary ← w .riдht

10 end
11 if xy == ”y” then
12 minBoundary ← w .top
13 maxBoundary ← w .bottom
14 end
15 if minBoundary < tabValue and

maxBoundary > tabValue then
16 divideLayout ← False
17 end
18 end
19 if divideLayout == True then
20 tabstopLayoutDividers ←

tabstopLayoutDividers ∪ {tabValue}
21 end
22 end
23 return tabstopLayoutDividers
24 end

all the widgets in the layout are either above it or below it, anal-
ogously for vertical tabstop layout dividers. We frst get all the
tabstops that divide the layout into two parts (Line 2). Then we
loop over each of these tabstops, we check if all the widgets in the
layout have minimum boundary greater than the tabstop value or
maximum boundary less than the tabstop. (For the x-axis, the mini-
mum boundary of a widget is its left boundary and the maximum
its right boundary, while for y-axis, they are the top and bottom
boundaries respectively.) If so, the tabstop is a clean cut for the
layout, and thus a tabstop layout divider (Line 4-22).

C LAYOUT STRUCTURE RECONSTRUCTION
We reconstruct the layout structure by recursively subdividing it
based on layout dividers (Algorithm 3). As the basic case in this
recursion, if the current sublayout only contains a single widget,
we simply return its identity (Line 1). Otherwise, we frst try to
subdivide the layout using vertical layout dividers (Line 3-4). If such
subdivision is possible (Line 6), then we sort all the widgets in the
layout by their bottom boundary positions (Line 8). We then assign
the widgets to diferent sublayouts based on the positions of the
horizontal layout dividers, and recursively use the reconstruction on
each sublayout structure (Line 9-19). We merge two layout dividers
into one if there is no widgets between them (Line 11).

We aim to reconstruct the simplest possible layout structure.
Therefore, to avoid creating layout dividers caused by accidental

CHI ’21, May 8–13, 2021, Yokohama, Japan

Algorithm 3: Layout Structure Construction

1 Function ConstructLayoutStructure(L)
2 if layout is a single widget, return it
3 xtab,ytab ← TabstopCreation(L)
4 ytabLayoutDividers ←

GetTabstopLayoutDividers(ytab, L.widgets, "y")
5 layoutStructure ← {”Column” : []}
6 if ytabLayoutDividers not empty then
7 widдetList ← []
8 widдetsCurr ← L.widдets sorted by w .bottom
9 for tabValue ∈ ytabLayoutDividers do
10 sublayoutWidgets ← {w |w ∈

widдetsCurr ∧ w .bottom ≤ tabValue}
11 if sublayoutWidgets is empty, then continue
12 layoutStructure[”Column”] ←

layoutStructure[”Column”] ∪
{ConstructLayoutStructure(Layout(
sublayoutWidgets))}

13 widдetList ← widдetList ∪ {sublayoutWidgets}
14 widдetsCurr ←

widдetsCurr − sublayoutWidgets
15 end
16 if widдetsCurr not empty then
17 layoutStructure[”Column”] ←

layoutStructure[”Column”] ∪
{ConstructLayoutStructure(Layout(
sublayoutWidgets))}

18 widдetList ← widдetList ∪ {widgetsCurr}
19 end
20 layoutStructure[”Column”][i : j] ←

ConstructLayoutStructure(Layout(
merдe(widдetList[i : j]))) if possible simplifed
structure exists for any
0 ≤ i < j < len(layoutStructure[”Column”])

21 return layoutStructure
22 end
23 process xtab analogously
24 if no subdivision is possible, then return L
25 end

alignments, we regroup widgets in multiple consecutive sublayouts
and try running the algorithm recursively to simplify the result-
ing layout structure. We reconstruct the sublayout if we can get a
simplifed sublayout structure by grouping them (Line 20). We try
horizontal subdivision (with vertical layout dividers) frst as it is
more common and in line with reading order. If horizontal subdi-
vision is not possible, we process vertical subdivision analogously
(Line 23). If both cases are impossible, which is very rare as UIs
are typically laid out using a division-based containment hierarchy,
then the layout can only be described using tabstops directly (Line
24), e.g., in a pinwheel layout [74]. Figure 4 shows the visualization
of the constructed layout structure of the MS Word “ribbon”.

Yue Jiang, Wolfgang Stuerzlinger, Christof Luteroth

Algorithm 4: Identical Node Detection

1 Function DetectIdenticalNode(S1Curr, S2Curr)
2 for s2 ∈ S2Curr do
3 if s2.hashCode ∈ S1HashMap.keys() then
4 S1Curr ← S1Curr − s1 if s1 ∈ S1
5 S2Curr ← S2Curr − s2
6 if s1 < S1 then
7 chanдes += {moveNode(s1, s2)}
8 end
9 else
10 pairs ← pairs ∪ {s2 7→ s1}
11 end
12 end
13 end
14 end

D NODE PROPERTIES
Based on the resulting layout tree structure of an input layout spec-
ifcation gotten from Algorithm 3, we traverse this tree structure
and create a corresponding new tree. Each widget becomes a leaf
node, while each Row or Column structure becomes an internal
node (non-leaf node). Each node stores the following properties:

• widдetId / type:
- leaf nodes: widget identifer
- internal nodes: structure type (either ”Row” or ”Column”)

• parent : parent node of the current node
• children: the list of children nodes of the current node
• pathToRoot : a list of tuples containing the ancestors of the
current node along with the positions among their siblings,
(e.g., If pathToRoot of the current node is [(Root , 2), (A, 3),
(B, 4)], then A is the 2nd child of the Root node, B is the 3rd
child of A, and the current node is the 4th child of B.)

• leaves: the list of all the leaves in the subtree rooted at the
current node

• hashCode:
- leaf nodes: hash(widдetId) based on a standard hash

function
- internal nodes: hash(”Row”/”Column”)
+ 1 × child1.hashCode + 2 × child2.hashCode
+ 3 × child3.hashCode + ...,
where child1, child2, child3, etc . are children nodes of the
current node

• childHashCode:
- leaf nodes: same as hashCode
- internal nodes: child1.hashCode XOR child2.hashCode

XOR child3.hashCode XOR ..., where child1, child2, etc . are
children nodes of the current node

E IDENTIFYING CORRESPONDING NODES
To identify corresponding nodes in the sibling lists S1 and S2, we
frst loop over the S2Curr list to fnd all the nodes s2 ∈ S2 such
that there is a node s1 ∈ Tree1 with the same hashCode as s2
(Algorithm 4). If the corresponding node s1 does not belong to
S1, then s1 moved to S2 at the position it occurs in S2 (Line 6-8).

ReverseORC: Reverse Engineering of Resizable User Interface Layouts with OR-Constraints CHI ’21, May 8–13, 2021, Yokohama, Japan

Algorithm 6: Layout Diference Detection Algorithm 5: Similar Node Detection

1 Function DetectSimilarNodes(S1Curr, S2Curr)
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

for s2 ∈ S2Curr do
if s2.childHashCode ∈ S1ChildHashMap.keys()

then
S1Curr ← S1Curr − s1 if s1 ∈ S1
S2Curr ← S2Curr − s2
if s1 < S1 then

chanдes ← chanдes ∪ {moveNode(s1, s2)}
end
else

pairs ← pairs ∪ {s2 7→ s1}
end
if s1.type , s2.type then

chanдes ← chanдes ∪
{chanдeType(s1, s1.type, s2.type)}

end
if s1.children , s2.children then

chanдes ← chanдes ∪
{chanдeChildrenOrder (s1, s1.children, s2.children)}

end
end

end
20 end

Otherwise, we pair a1 and s2 in sibling lists (Line 10). We expect
most s2 ∈ S2 have its corresponding node s1 ∈ Tree1. Thus, after
this step, S2Curr list should only contain very few nodes. Similarly,
for all the remaining nodes s2 ∈ S2Curr , we check whether there is
a node s1 ∈ Tree1 with same childHashCode as s2, and pair them
accordingly (Algorithm 5 Line 2-11). In addition, we identify type
changes and children node order changes (Line 12-17).

F LAYOUT DIFFERENCE DETECTION
We detect the diferences between two layout specifcations and
identify edit operations by recursively comparing corresponding
lists of sibling nodes S1 and S2 (Algorithm 6), with the correspond-
ing lists containing child nodes of nodes that have already been
determined to correspond. The basic idea is: we try to match cor-
responding nodes in S2 with nodes in Tree1. Whenever we have
found a correspondence, we compare the respective nodes and
record edit operations for any diferences in position, type or child
order. Initially, the inputs of the layout diference detection algo-
rithm are S1 = [root node of Tree1] and S2 = [root node of Tree2],
where Tree1 and Tree2 are the trees representing the two layout
specifcations. We then identify the corresponding nodes in the
sibling lists and recursively apply this algorithm to the children
nodes of corresponding nodes. As we fnd corresponding nodes, we
specify their diferences (if any) as edit operations and add them to
a set changes. In each call, we maintain a hash table pairs mapping
nodes in S2 to corresponding nodes in S1; with pairs initially empty
(Line 2). We keep track of currently unpaired nodes by removing
the paired nodes from the lists S1 and S2 once a pair has been found.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

node’s hash values in IdenticalNodeDetection and DetectSimilarN-
odes. These methods loop over S2Curr to fnd all the nodes s2 ∈ S2
such that there is a node s1 ∈ Tree1 with the same hashCode or

Function LayoutDiferenceDetection(S1, S2)
pairs ← {} // hash table from nodes in S2 to nodes in S1
S1Curr ← S1
S2Curr ← S2
DetectIdenticalNodes(S1Curr , S2Curr) // fnd and pair S2
nodes that are identical to Tree1 nodes
DetectSimilarNodes(S1Curr , S2Curr) // fnd and pair S2
nodes that have the same leaves as Tree1 nodes
while S2Curr not empty do

(s1Best , s2Best) ← (s1 ∈ S1, s2 ∈ S2) s.t. max
number of common leaves

maxSim ← numCommonLeaves(s1Best , s2Best)
if maxSim > 0 then

S1Curr ← S1Curr − s1
S2Curr ← S2Curr − s2
pairs ← pairs ∪ {s2Best 7→ s1Best }
if s1Best .type , s2Best .type then

chanдes ← chanдes ∪
{chanдeType(s1Best , s2Best .type)}

end
LayoutDiferenceDetection(s1Best .children,
s2Best .children)

end
else

break
end

end
S1Paired ← [s1 f or s1 ∈ S1 i f s1 ∈ pairs .values()]
S2Paired ← [s2 f or s2 ∈ S2 i f s2 ∈ pairs .keys()]
Replace s2 ∈ S2Paired by pairs[s2]
if S1Paired , S2Paired then

chanдes ← chanдes ∪
{chanдeChildrenOrder (s1.parent , S2Paired)}

end
if num of paired nodes before s1 ∈ S1 = num of paired
nodes before s2 ∈ S2 then

S1Curr ← S1Curr − s1
S2Curr ← S2Curr − s2
chanдes ← chanдes ∪ {replaceNode(s1, s2)}

end
for s1 ∈ S1Curr do

chanдes ← chanдes ∪ {removeNode(s1)}
end
for s2 ∈ S2Curr do

chanдes ← chanдes ∪ {addNode(s2)}
end

end

We frst try to detect strong correspondences based on a

CHI ’21, May 8–13, 2021, Yokohama, Japan

childHashCode as s2. If the corresponding node s1 does not belong
to S1, then s1 moved to S2 at the position it occurs in S2. Other-
wise, we pair a1 and s2 in sibling lists. In addition, we identify type
changes and also children node order changes (Details see Appen-
dix Section E). We expect most s2 ∈ S2 have its corresponding node
s1 ∈ Tree1. Thus, after this step, S2Curr list should only contain
very few nodes.

If we cannot fnd corresponding nodes for all the nodes s2 ∈
S2Curr , we pair the remaining nodes in S1Curr and S2Curr based
on their similarity. We keep pairing (s1 ∈ S1Curr , s2 ∈ S2Curr)
depending on the largest number of common leaves and recursively
call the algorithm on their children nodes. We stop this pairing

Yue Jiang, Wolfgang Stuerzlinger, Christof Luteroth

process when there is no node remaining in S2Curr or all the
s1 ∈ S1Curr and s2 ∈ S2Curr have no common leaves (Algorithm 6
Line 7-22). In addition, we check whether the order of all the paired
nodes has not changed in S1 and S2 (Line 23-28).

After all the above pairing operations, S1Curr and S2Curr con-
tain all the nodes that cannot be paired with any node in the other
layout tree. If s1 ∈ S1Curr and s2 ∈ S2Curr have the same relative
position among their sibling nodes, i.e., the number of paired nodes
before them are the same, then we infer that s1 in S1 is replaced by
s2 in S2 (Line 29-33). All the remaining s1 ∈ S1Curr are removed
from S1 and s2 ∈ S2Curr are added in S2 (Line 34-39).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Resizable UI Layout
	2.2 Customizing User Interfaces
	2.3 Reverse Engineering

	3 Overview
	3.1 Usage Scenarios

	4 User Interface Sampling
	4.1 Widget Extraction
	4.2 Grid Search

	5 Layout Structure Reconstruction
	5.1 Tabstops
	5.2 Reconstruction Algorithm

	6 Layout Difference Detection
	6.1 Edit Operations
	6.2 Layout Tree Data Structure
	6.3 Difference Detection Algorithm

	7 ORC Layout Specification Generation
	7.1 ORC Layout Pattern Matching
	7.2 Visualizing Reconstructed Layout Quality

	8 Applications
	8.1 GUI Reverse Engineering – MS Word Ribbon
	8.2 Web UI Reverse Engineering – BBC News
	8.3 Exemplar-Based Layout Design

	9 Discussion
	10 Conclusion and Future Work
	References
	A Tabstop Creation
	B Tabstop Layout Dividers
	C Layout Structure Reconstruction
	D Node Properties
	E Identifying Corresponding Nodes
	F Layout Difference Detection

