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Figure 1: Reverse engineering of the MS Word “ribbon” toolbar. ReverseORC samples the user interface (UI) at diferent sizes 
and reconstructs parsimonious layout specifcations for each size. It then detects changes between the layout specifcations 
using a novel dif algorithm for layouts, and matches the changes with corresponding layout patterns to reconstruct a UI with 
the same resize behaviours as the original. We visualize the overall quality of reconstruction at diferent sizes in an error map 
by color-coding structural error (shades of yellow), transition error (blue/green), and ‘fault lines’ (black) indicating potentially 
inconsistent behaviors. 

ABSTRACT 
Reverse engineering (RE) of user interfaces (UIs) plays an important 
role in software evolution. However, the large diversity of UI tech-
nologies and the need for UIs to be resizable make this challenging. 
We propose ReverseORC, a novel RE approach able to discover 
diverse layout types and their dynamic resizing behaviours inde-
pendently of their implementation, and to specify them by using 
OR constraints. Unlike previous RE approaches, ReverseORC infers 
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fexible layout constraint specifcations by sampling UIs at diferent 
sizes and analyzing the diferences between them. It can create spec-
ifcations that replicate even some non-standard layout managers 
with complex dynamic layout behaviours. We demonstrate that 
ReverseORC works across diferent platforms with very diferent 
layout approaches, e.g., for GUIs as well as for the Web. Further-
more, it can be used to detect and fx problems in legacy UIs, extend 
UIs with enhanced layout behaviours, and support the creation of 
fexible UI layouts. 

CCS CONCEPTS 
• Human-centered computing → User interface toolkits. 

KEYWORDS 
ORC Layout; reverse engineering; constraint-based layout; adaptive 
user interface; resizable user interface 

This work is licensed under a Creative Commons Attribution International 
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1 INTRODUCTION 
Modern user interfaces (UIs) have become increasingly fexible. 
They use sophisticated layouts that can adapt to diferent sizes and 
orientations. For example, responsive web layouts [40] enable de-
signers to create web UIs that work on large desktop screens, small 
tablets, and tiny mobile devices by rearranging and adapting the UI. 
Similar approaches are used for mobile UIs [58, 72] and sometimes 
even for desktop UIs. The UIs and their layouts are created using 
UI toolkits [25, 26, 45] and UI builders [60, 73], which facilitate the 
efcient creation and editing of common layouts and support an 
iterative design process. However, available UI toolkits, builders 
and supported layouts are numerous and constantly evolving, lead-
ing to a wide diversity of diferent layouts such as grid, fow, group, 
stack, tile, fexbox and constraint-based layouts. 

It is challenging to change an existing UI if its source code or 
specifcation is not available. Even if a specifcation is available, it is 
usually tied to the UI toolkit that was used to create the UI, and the 
diversity of UI toolkits and layouts makes it hard to understand and 
use such a specifcation. The problem of reconstructing an existing 
UI for further development is called UI reverse engineering (RE). It 
is known to be difcult but often necessary as software and devices 
evolve and new UI toolkits and platforms need to be supported. For 
example, developers may want to modernize a legacy UI to beneft 
from novel technologies – a use case where it is quite common that 
source code is not available, hard to modify, or an equivalent layout 
API may not exist. An illustrative case here is porting desktop 
GUIs to smartphones or vice versa, or even to/from webpages. It is 
very challenging to reverse engineer a UI so that its features and 
behaviours are consistent across diferent toolkits and platforms; 
so developers usually spend a lot of time trying to understand a 
specifcation and often end up manually re-implementing large 
portions of the UI [18, 23, 52]. 

In order to ease the burden of UI RE, many automated RE tools 
have been proposed. By using automated RE tools, specifcations of 
GUI elements, layouts, and application behaviours can be extracted 
and modifed independently of their underlying implementations 
and platforms. Previous works on reverse engineering UIs focus 
on detecting components in the interface [8, 42, 64], migrating UIs 
from one platform to another [17, 37, 41, 43, 44, 56, 57], and/or 
performing input and output redirection [9, 10, 64, 65]. Previous 
works have shown that RE tools can reconstruct UI layouts that look 
similar to the originals, and can then generate implementations 
of the UI for other UI platforms and toolkits. However, while UI 
layout has evolved, RE tools have not kept pace with modern UIs: 
they cannot currently capture the complex resizing behaviours that 
have become commonplace for the web, on mobile devices, and 
even many desktop UIs. 

This paper presents ReverseORC, a novel prototype that is able 
to reverse engineer UI layout specifcations based on a UI’s resize 
behaviors. Given only widget placements for diferent UI sizes of 
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an existing GUI, ReverseORC identifes how layout behaviours 
are encoded in the UI and generates a corresponding layout spec-
ifcation. The new layout specifcation is expressed using ORC 
Layout [30], an approach for constraint-based layouts based on 
OR-constraints (ORC). ORC Layout is a powerful tool that allows 
designers to express modern resizable UI layouts in a mathematical, 
platform-independent manner, as constraint optimization problems. 
It unifes fow layouts and conventional constraint-based layouts 
to represent a large variety of layouts for desktop, web and mobile 
platforms. We build ReverseORC on ORC Layout as this is one of 
the most fexible layout specifcation mechanisms that does not 
involve programming. 

ReverseORC automatically extracts specifcations of how a UI is 
laid out for diferent UI sizes. It determines which UI size samples 
are necessary to infer an equivalent ORC layout specifcation. Al-
though it is not possible in general to reverse engineer an arbitrary 
layout algorithm solely from examples for its output, ReverseORC 
is able to detect common layouts such as grids and fow. Addi-
tionally, it is able to detect advanced patterns describing dynamic 
changes in a layout (ORC patterns), such as widgets shifting or 
disappearing when the UI is made smaller. ReverseORC is designed 
to generate parsimonious specifcations, i.e. specifcations that are 
sufciently rich to capture the desired behaviour, but not more 
complex than necessary. This makes ReverseORC’s output easier 
to understand for a human designer, so that they can potentially 
build on it later. Only if ReverseORC cannot identify a pattern in 
the observed changes, then it uses OR constraints to combine the 
specifcations of the respective layouts. 

We demonstrate that ReverseORC can be applied to UIs on difer-
ent platforms, such as desktop and web UIs, reconstructing platform-
independent specifcations for a wide range of UI technologies. Fur-
thermore, we support a variety of use cases based on the generated 
ORC layout specifcations: Many existing GUI layouts are static or 
cannot ft a large range of screen sizes adaptively, e.g., from smart 
watches and smartphones to desktop environments. Designers can 
specify desired adaptations of such a layout by example, and let Re-
verseORC reconstruct an appropriate fexible layout specifcation. 
In a similar manner, designers can use ReverseORC to create new 
resizable layout specifcations from scratch. Furthermore, Reverse-
ORC allows designers to fx bad layout behaviors by modifying 
the generated ORC layout specifcation. In summary, ReverseORC 
lifts the level of abstraction of the layout specifcation process by 
allows designers to create and edit sophisticated fexible layout 
specifcations by example. 

Novelty. In contrast to existing GUI reverse engineering ap-
proaches [17, 37, 41, 43, 44, 56, 57], ReverseORC is able to recon-
struct the dynamic resizing behaviors of a GUI. Extending previous 
work that identifed static layout components, it detects advanced 
layout patterns such as optional and shifting widgets and specifes 
their behaviors. It is platform and toolkit independent, which en-
ables reuse of layouts across applications and platforms. Finally, it 
allows designers to specify the resize behavior of UIs by example. 
In particular, we demonstrate the following contributions: 

(1) A novel method for identifying and reverse engineering 
dynamic layout behaviors for diferent platforms, only by 
sampling diferent layout sizes for an existing UI. 

https://doi.org/10.1145/3411764.3445043
https://doi.org/10.1145/3411764.3445043
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(2) A novel method for detecting the diferences between layout 
specifcations. 

(3) A novel method of specifying and editing resizable layouts 
by example. 

(4) Validation of our approach based on real-life layouts, includ-
ing GUI layouts, e.g., the Microsoft Word Ribbon, and web 
layouts, e.g., the BBC News website, as well as demonstrating 
that ReverseORC can reverse engineer layouts based on a 
very small number of exemplars. 

2 RELATED WORK 

2.1 Resizable UI Layout 
Due to the large diversity of existing computing devices, which 
vary in their screen sizes and aspect ratios, and users’ diferent 
personal viewing preferences, it is important that applications sup-
port resizable UI layouts. Layout models are widely used to specify 
resizable UI layouts, and layout managers then generate the lay-
out results based on the specifcations. Early approaches proposed 
simple layout models, such as group, grid, table, and grid-bag lay-
outs [45, 47]. Object-oriented models like Amulet [48] combined 
properties of fow and grid layouts. Modern GUI layout models 
are mostly constraint-based [38, 74] and used together with UI 
builders, which can create layout constraints based on direct ma-
nipulation [32, 60, 69, 73]. 

Jiang et al. [30] proposed ORC Layout, an approach for constraint-
based layouts based on OR-constraints (ORC). An OR-constraint 
is a disjunctive constraint, where only one disjunctive part needs 
to be true. ORC Layout unifes fow and conventional constraint-
based layouts through adding OR-constraints to standard soft/hard 
linear constraint systems. ORC Layout specifcations also enable 
the use of ORC design patterns, which enable designers to create a 
large variety of fexible layouts that work across diferent screen 
sizes and orientations. ORC Layout is a powerful, high-level lay-
out specifcation method; it enables users to describe layouts with 
dynamic behaviors that adapt to screens with very diferent sizes, 
orientations, and aspect ratios, using only a single layout specif-
cation. ORCSolver [31] is a novel solving technique to efciently 
solve ORC Layout specifcations. ReverseORC uses ORC Layout to 
express the captured dynamic layout behaviors. 

Previous work also investigated resizable web layouts. Chen et 
al. [7] presented a page-adaptation technique that splits a web page 
into smaller blocks to adapt pages for small screen devices. Xie 
et al. [70] proposed a novel document representation dynamically 
adapting screen sizes. Domshlak [13] enabled personalized presen-
tation of web page content. Constraints can also be used to specify 
the desired layout of a web page, e.g. Borning et al. [4] proposed 
a constraint-based web system enabling both the author and the 
viewer to defne page layout constraints. Hosobe [22] introduced an 
algorithm to solve hybrid systems of linear constraints and one-way 
constraints to handle web document layouts efciently. 

2.2 Customizing User Interfaces 
Researchers have proposed several approaches that can be used 
to modify a GUI if it is not automatically adapted to the user’s 
requirements or if the adaptation is sub-optimal, e.g., when using 
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Table 1: Overview of reverse engineering approaches (‘+’ de-
notes full and ‘∼’ partial support for certain layouts). 

Basic 
Layouts 

Flow 
Layouts 

Dynamic 
Topology 

Most previous RE work + 
Constraint-based RE [37] + 
Model-driven RE [56, 57] + ∼ 
Expresso [33] ∼ 
InferUI [2] + 
ReverseORC + + + 

a GUI on a device with a smaller size. For traditional GUIs, Ed-
wards et al. [14] and Olsen et al. [53] proposed to modify interfaces 
by replacing drawing objects and intercepting API commands in 
applications with specifc toolkit implementations. WinCuts [66] 
enabled window subdivision with a copy-paste method to confgure 
input/output redirection. Mudibo [28] used input/output redirec-
tion to generate windows with multiple alternative positions, and 
allowed users to choose a desired one. User Interface Façades [64] 
detected all widgets and their hierarchy through an accessibility 
API, enabled widget replacement, and presented advanced cus-
tomization of runtime interaction behaviour. 

Previous research on web UI customization was mostly based 
on a structured presentation, the Document Object Model (DOM). 
ChickenFoot [3], CoScripter [34], and Koala [36] automated, cus-
tomized, and integrated web applications. Clip, Connect, Clone [16], 
d.mix [19], and Vegemite [35] introduced end-user mash-up meth-
ods between existing applications. Highlight [51] re-authored web 
applications on mobile interfaces. 

As all UIs are instantiated as pixels, previous work widely ex-
plored pixel-level interpretation to enhance UIs. Pixel-based ap-
proaches have been proposed to access data [55], record the actions 
performed by users [61], translate input and output into diferent 
forms [1], improve target detection in accessibility APIs [27], per-
form visual manipulation [75], and event management [76]. Screen-
Crayons [54] enabled document and visual annotation. Sikuli [6, 71] 
supported UI testing by writing visual test scripts. Genie [65] re-
verse engineered underlying commands to enable users to engage 
with web applications via diferent input modalities. Hurst et al. [27] 
presented improved target boundary detection based on the combi-
nation of an accessibility API and pixel-based methods. ReverseORC 
is a platform- and framework-independent system enabling cus-
tomization for both GUI layouts and web layouts. 

2.3 Reverse Engineering 
UI reverse engineering is widely used to migrate applications from 
one platform to another. Moore [42] presented a rule-based detec-
tion approach for partially automating the process of reversing en-
gineering legacy applications. Staiger [62] analyzed the source code, 
identifed widgets, and reconstructed the GUI tree. MORPH [41, 43] 
proposed a model-oriented re-engineering process for migrating 
character-based legacy UIs to GUIs. REMAUI [50] was a pixel-based 
approach that automatically reverse engineered mobile application 
UIs. None of the above approaches yielded resizable layout infor-
mation. 



             

           
          

         
        

          
        
           

           
         

             
         
        

        
        

          
        

          
       
         

   
        

        
           

         
          
         

          
         

         
         

          
        

            
          

          
          

           
         

         
         

           
          

          
         
       

            
        
           

         
          

          
           

            
           
           

       

  
        

           
          

             
         

          
        

        
        
        

   
        

         

        
          
            
         

           
        

          
            
           
         

      
       

      
         

          
           

           
          

          
       

           
        

          
    

    
           

           
          

         
           
       

           
           

          
         

           
            

         

 

CHI ’21, May 8–13, 2021, Yokohama, Japan 

Reverse engineering has been used as a way to perform GUI cus-
tomization. UI Façades [64] enabled users to replace widgets and 
change application behaviors for an existing application at runtime 
through an accessibility API-based approach. Prefab [8–12] was 
a pixel-based approach that provided a tree structure to interpret 
content and hierarchy [11]. Both approaches identify interface el-
ements and allow the user to add interactive enhancements to a 
GUI [8, 12, 64]. However, none of these approaches allowed users 
to modify the layout itself. Instead of using pixel-based interpreta-
tions of a UI for reverse engineering [12] or migrating a UI directly 
between diferent platforms [17, 59], our approach detects layout 
behaviors and generates standard ORC Layout specifcations to fa-
cilitate UI development and customization. Similar to ReverseORC’s 
layout structure reconstruction, InferUI [2] infers constraints to 
describe a layout from UI exemplars. Yet, InferUI generates only 
linear constraints, which maintain relative mutual alignments of 
widgets but can only express a single topological arrangement. In 
contrast, ReverseORC infers OR-constraints, which can express 
dynamic topological layout changes such as fow, optional widgets, 
and alternative positions. 

Lutteroth [37] reverse engineered GUI layouts to recover higher-
level constraint-based specifcations [39] and to generate layouts 
that are resizable. Sánchez Ramón et al. [56, 57, 59] proposed 
a model-driven approach to reverse engineer legacy GUIs by 
capturing the visual arrangement of elements in the layout and 
produced GUI models with that explicit layout. While these ap-
proaches [56, 57] can capture common layout containers in a hier-
archical manner, ReverseORC is also able to reconstruct a platform-
independent specifcation of dynamic UI changes, such as optional 
widgets or widgets that change position across the layout hierar-
chy to accommodate changes in screen space, which cannot be 
expressed with common layout containers. The above approaches 
were only able to deal with simple layout behaviors such as grid ar-
rangements, but could not deal with layouts that included dynamic 
layout changes such as fows, shifting widgets or optional widgets. 

Reverse engineering is also useful for web layouts. Moore et 
al. [44] used the MORPH technique [41, 43] to re-engineer legacy 
information systems to operate on the web. CELLEST [63] demon-
strated a process for migrating legacy GUIs to web-accessible plat-
forms. Gerdes [17] proposed a method to migrate Windows applica-
tions to Visual Basic .NET, based on runtime traces. VAQUISTA [67] 
reverse engineered the presentation model of a web page to gen-
erate equivalent GUIs for other platforms. VIPS [5] presented an 
approach for web content structure analysis based on visual repre-
sentation. Similar to ReverseORC’s exemplar-based layout design, 
Expresso [33] allows designers to specify samples of a web UI at 
diferent sizes. Expresso then either linearly interpolates widget 
positions and sizes between the given UI sizes (‘keyframes’), or lets 
them jump discontinuously, as specifed by the designer. In con-
trast to ReverseORC, Expresso does not infer behavioral UI layout 
patterns dynamically. For example, if widgets should fow onto a 
new line, the designer would have to specify keyframes for every 
possible line break in Expresso. To the best of our knowledge there 
is no reverse engineering approach for UI layouts that can extract 
a UI’s dynamic resize behaviours. Table 1 shows a comparison of 
the capabilities of diferent reverse engineering approaches. 

Yue Jiang, Wolfgang Stuerzlinger, Christof Luteroth 

3 OVERVIEW 
Our ReverseORC approach frst extracts widget information from 
the layout through accessibility APIs. Then, it uses a grid search 
to sample and resize the layout through setting diferent window 
sizes (Figure 2 a). It constructs a layout tree for each sampled layout 
(Figure 2 b). ReverseORC then tracks all diferences between lay-
out trees of neighboring layouts during the sampling process and 
generates corresponding layout diferences. Based on these layout 
diferences, ReverseORC then infers overall layout behaviors and 
patterns, and constructs a corresponding ORC layout specifcation, 
enabling later modifcation and customization (Figure 2 c). 

3.1 Usage Scenarios 
ReverseORC fts into standard software development practice and 
has many practical applications. Some typical usage scenarios are: 

(1) Developers initiate automatic UI sampling with a platform-
specifc tool: For desktop UIs, developers run the app to 
reverse engineer. Our tool then uses OS calls to set the UI 
window size and accessibility API calls to query widgets 
and their properties. For web UIs, developers use a tool with 
an embedded browser, instrumented to resize and extract 
widgets after the UI has been loaded. Similarly, for mobile 
UIs we use an emulator, with emulator calls to set the screen 
size and extract widgets. For each UI sample, all widgets and 
their properties are stored in a platform independent format. 
Previous work has demonstrated such approaches. 

(2) Layout structure reconstruction, diference detection, and 
ORC specifcation generation are performed automatically 
based on the UI samples with our platform-independent tool. 
The tool visualises the quality of the reverse engineered UI 
(see 6.2) and allows developers to display it at specifc sizes 
by clicking on points on the error map. Developers can adjust 
the results and fx bad layout behaviors by modifying and 
adding UI samples (see 7.3), or editing the ORC specifcation 
directly using the ORC Editor [30, 31]. 

(3) ORC UI specifcations can then be used directly by running 
them on a platform-specifc implementation of the ORC 
Solver, which can run on desktop and mobile platforms as 
well as the web1. 

4 USER INTERFACE SAMPLING 
To reverse engineer a GUI, we follow the common approach of 
frst detecting the widgets of the UI, and then reconstructing the 
layout of the widgets using ORC Layout as abstraction model. Sub-
sequently, we transform the reconstructed specifcation to its target 
form, generating a new UI for the desired platform. As discussed 
above, previous works only reconstruct lower-level UI specifca-
tions that ignore the more abstract aspects of UI layout during 
this process. By sampling an existing UI at diferent layout sizes, 
ReverseORC can identify and reverse engineer both GUI layout and 
web layout behaviours. It frst extracts widget information from 
the layout through accessibility APIs. Then, it uses a grid search 
to sample and resize the UI layout by setting diferent window or 
screen sizes. ReverseORC keeps track of any diferences between 

1github.com/cpitclaudel/z3.wasm 

https://1github.com/cpitclaudel/z3.wasm
https://1github.com/cpitclaudel/z3.wasm
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Figure 2: Overview of the diferent stages of the ReverseORC approach: a) UI sampling by setting diferent window sizes 
(horizontal lines are divisors that defne Row layout containers); b) layout tree structure construction for each sample; and c) 
diference detection between layout trees and layout pattern inference. 

neighbouring layouts during the sampling process, and is then able 
to reconstruct an abstract layout specifcation based on the way 
the layout changes depending on its size. 

4.1 Widget Extraction 
Similar to UI Façades [64], our approach extracts widget infor-
mation of UIs through an accessibility API. An accessibility API 
provides a structured representation analogous to the Document 
Object Model (DOM). Compared to pixel-based approaches [8] or 
computer vision recognition-based approaches [50], accessibility 
APIs directly access the underlying data of a UI, which avoids the 
potential for recognition errors. In addition, accessibility APIs can 
access information that is not visible or not obtainable by analyz-
ing raw pixels, e.g., widget identities. We still acknowledge that 
pixel-based approaches could be used as an alternative mechanism 
in ReverseORC, albeit at the price of an increased risk of layout 
recognition errors. 

To extract the widget information ReverseORC needs, we tra-
verse the structured representation through the accessibility API. 
Under the assumption that the bounding box of each widget is 
rectangular, for each widget w in the layout, we retrieve its unique 
identifer (w .id), size (w .width, w .height), and coordinates for its 
top-left corner (w .left, w .top). Some accessibility APIs provide more 
information about a UI, including information not only about the 
widgets but also about the layout managers used. For example, it is 
generally possible to access the full DOM of a web UI. However, Re-
verseORC does not use this information for the following reasons: 
1) Layout information is not always available, e.g., some desktop 
UIs do not provide it. 2) There are too many layout managers to 
understand the layout behavior of a UI just from the DOM, so DOM 
layout containers are often like black boxes. 3) Layout behaviors 
are often described at least partly programmatically rather than 
in the DOM, e.g., using JavaScript code; therefore they cannot be 
inferred from the DOM alone. And 4) even if we could interpret 
a DOM description of a UI layout, DOMs are often much more 
complicated than they need to be. For example, many complex web 

apps use large numbers of nested DIV elements, confounding as-
pects of layout and functional application design. One of the aims 
of ReverseORC is to provide a parsimonious layout representation, 
i.e., a representation that avoids unnecessary complexities. This is 
achieved by analysing not how developers have specifed layouts, 
but by analysing what layouts actually looks like, in the simplest 
terms possible. 

4.2 Grid Search 
We use an adaptive grid search approach to obtain a representative 
set of diferent layout exemplars by resizing the window or a virtual 
screen. A brute force method to thoroughly analyze a layout would 
be to sample as many exemplars as possible. However, in practice, 
it can be expensive to resize the layout to all potential sizes, and it 
would create unnecessary work for the later reverse engineering 
stages. Thus, it is best to minimize the number of queries by taking 
advantages of the continuous nature of UI layout: layout changes 
occur incrementally, as it would otherwise confuse the user. If two 
sampled layout exemplars have the same structure or their variance 
matches layout behaviours we have already detected, then there 
is no need to subsample further and to explore more exemplars 
in the range between the sizes of these two layout exemplars. In 
this case we (very likely) have already identifed all the behaviors 
in this range and are unlikely to get more information by further 
subsampling. 

We chose to perform an adaptive grid search to sample UI layout, 
as layout sampling is a two-dimensional problem. Both the width 
and height of a UI are likely to afect its layout, with UIs often 
assuming diferent layouts for diferent sizes and aspect ratios. We 
start with the extreme window sizes (minimum and maximum) 
and sample new layout sizes based on a binary grid search. We 
defne the maximum size of a layout as the biggest screen size we 
would like to support, and the minimum size as is defned by the 
layout, i.e., the minimum size that the UI can be set to. During the 
search process, if two sampled layout exemplars L1 and L2 have 
the same structure or their variance matches layout behaviors we 
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have already detected, then we stop subsampling in the window 
size range between these two layout exemplars. Otherwise, we 
subsample depending on their sizes. If they have the same width 
but diferent heights, we subsample a layout exemplar with the 
same width and the middle height of the two. Analogously, if they 
have the same height but diferent widths, we subsample a layout 
exemplar with the same height and the middle width of the two. 
If both width and height are diferent, we subsample three layout 
exemplar with 1) middle width and middle height, 2) same width 
as L1 and same height as L2, and 3) same height as L1 and same 
width as L2, respectively. 

We show a sampling example in Figure 3, referring to the layout 
exemplars as (Min), (Max), (1), (2), etc. We start with the extreme 
layout sizes, i.e., the minimum size (Min) shown at the top left 
and the maximum (Max) at the bottom right. According to the 
subsampling rules, based on (Min) and (Max), we subsample layout 
exemplars (1), (2) and (3). To minimize the number of subsampling 
exemplars, we frst subsample between two exemplars with the 
same height or width, and perform further subsampling along the 
diagonals between exemplars only if both variations in height and 
width show changes in the layout structures. For example, we 
subsample layout (4) between (Max) and (1). Widget 3 disappears in 
(4), so we continue to subsample between (Max) and (4) to detect the 
point of its disappearance, stopping the subsampling once the size 
diference between two exemplars is small. The structural diference 
between (Max) and (3) is the same as the diference between (Max) 
and (4), i.e., widget 3 disappears. As we have already subsampled 
between (Max) and (4), we do not subsample further between (Max) 
and (3). We keep subsampling until we fnd all structural diferences 
of the exemplars and the approximate transition points of changes. 

5 LAYOUT STRUCTURE RECONSTRUCTION 
In order to compare the diferences between layouts, we aim to 
reconstruct the simplest possible specifcation for the structure 
of a layout exemplar. We use symbolic tabstop dividers to divide 
layouts into separated parts in order to defne layout structure. Such 
layout structure makes it easier to compare layouts and detect the 
diferences between layouts. 

5.1 Tabstops 
A tabstop is an abstraction that has been introduced in previous 
work on GUI layouts [21, 24, 39, 73]. It is a symbolic object in 
the layout used to represent the alignments of multiple widgets. 
Associated with the two dimensions of the plane, there are two 
types of tabstops: x-tabstop and y-tabstop. An x-tabstop represents a 
position on the x-axis and correspondingly for a y-tabstop. Tabstops 
are in efect variables defning horizontal (y-tabstops) or vertical (x-
tabstops) grid lines. The combination of x-tabstops and y-tabstops 
in a GUI forms a grid controlling how widgets are aligned in the 
GUI. Each widget w has four tabstop variables (w .left, w .right, w .top, 
w .bottom) that delimit the area it occupies. Similarly, a layout L 
itself has four tabstop variables L.left, L.right, L.top and L.bottom 
that defne its boundaries, which is typically called the window (or 
panel) size. 

The main advantage of using tabstops is that in a constraint-
based layout system, if some widgets share a boundary, can just add 
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a tabstop to the specifcation and then have all the corresponding 
widgets refer to that tabstop instead of adding separate alignment 
constraints for each widget. This approach makes it easier to main-
tain and modify the resulting constraint system. Whenever we need 
to change the alignment of the widgets sharing a tabstop, we just 
need to change the constraints relating to that tabstop, and then 
all the corresponding widgets will be positioned accordingly. For 
each layout L, we defne tabstops through two functions xtabs()
and ytabs() that map from positions in the GUI to tabstop vari-
ables in the layout: xtabs is a function mapping from x-coordinates 
to x-tabstops, and ytabs mapps y-coordinates to y-tabstops (See 
Appendix A for details about tabstop creation). 

To guide layout reconstruction, we call a tabstop a layout divider 
if it is a clean cut dividing the layout into two parts without crossing 
any widget in the layout. To reconstruct the containment hierarchy 
of a UI, the concept of layout dividers is applied recursively on 
the sublayouts contained in a layout. For example, in Figure 4 the 
orange lines are the vertical layout dividers of the overall layout, and 
the green lines are horizontal layout dividers of sublayouts. Figure 5 
shows two examples of subdivision results. For a horizontal layout 
divider, all the widgets in the layout are either above it or below it, 
and analogously for vertical layout dividers (See Appendix B for 
details about tabstop layout divider detection). 

5.2 Reconstruction Algorithm 
Our layout structure reconstruction algorithm uses the same prin-
ciples as the XY-Cut algorithm [29, 49] but works at a higher level 
of abstraction. Rather than segmenting an image based on gaps, 
we consider widget boundaries directly and we remove cuts if this 
allows us to simplify the X-Y structure. 

We defne layout structure using Row and Column layout con-
tainers. Two widgets belong to the same Row if they are located 
between the same two horizontal layout dividers, and analogously 
for Column. The resulting layout structure is a nested Row and Col-
umn structure. We reconstruct the layout structure by recursively 
subdividing it based on layout dividers. We try horizontal subdivi-
sion (with vertical layout dividers) frst as it is more common and 
in line with reading order. If horizontal subdivision is not possible, 
we process vertical subdivision analogously. We then assign the 
widgets to diferent sublayouts based on the positions of the hori-
zontal layout dividers, and recursively use the reconstruction on 
each sublayout structure. If both cases are impossible, which is very 
rare as UIs are typically laid out using a division-based containment 
hierarchy, then the layout can only be described using tabstops, 
e.g., in a pinwheel layout [74] (see Appendix C for details about 
layout structure construction). Figure 4 shows the visualization of 
the reconstructed layout structure of the MS Word “ribbon”. 

We aim to reconstruct the simplest possible layout structure. 
To avoid creating layout dividers caused by accidental alignments, 
we regroup widgets in multiple consecutive sublayouts and try 
running the algorithm recursively to simplify the resulting layout 
structure. We reconstruct the sublayout if we can get a simplifed 
sublayout structure by grouping them. 
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Figure 3: Grid subsampling example. 

Figure 4: Visualization of the layout structure of the MS Word “ribbon” as reconstructed in Section 5.2. Horizontal lines are 
divisors that defne Row layout containers and vertical lines defne Col(umn)s. 

6 LAYOUT DIFFERENCE DETECTION 
ReverseORC keeps track of diferences between neighbouring lay-
outs during the sampling process and generates corresponding 
layout change sets. Based on the constructed layout structure, we 
can generate a corresponding layout specifcation tree where wid-
gets are leaf nodes, and Rows and Columns are internal, non-leaf 
nodes. Our layout diference detection algorithm takes two layout 
trees as input and generates a set of edit operations that indicates 
the diferences between the two. The set of edit operations is then 
used to infer layout behaviors. 

Although there are many existing diference detection algorithms 
[15, 20, 68], they cannot easily be applied because UI layouts have 
diferent requirements than other common tree structures such as 
XML or source code. Previous tree diference detection algorithms 
usually either consider none of the tree nodes to have a unique 
identity, or all of the nodes to have a unique identity. However, in 
the case of layouts, some tree nodes (the widgets) have a unique 
identity and some have not (the layout nodes). We can observe 
the widgets from the outside, e.g., through an accessibility API, 
and can identify them. However, we cannot reliably identify layout 
elements such as rows and columns as accessibility APIs usually 
do not deliver this information; we infer their presence only by 

the way the UI is structured. So in a nutshell, our diference de-
tection algorithm must be able to work with identities for some 
nodes, but not others. In addition, previous diference detection 
algorithms often only supported the detection of deletion, insertion, 
and moving. For thoroughly analyzing and comparing layouts, we 
need more edit operations, such as whether a Row has changed to 
a Column. Furthermore, the computational complexity of generic 
tree diference detection algorithms are often quadratic. Our lay-
out tree diference detection algorithm only takes linear time for 
detecting layout diferences in practice. 

6.1 Edit Operations 
We defne the following edit operations that can be applied to 
change a layout specifcation S1 to another specifcation S2, thus 
indicating the diferences between them: 

• addNode(s2): add node s2 in S2 
• removeNode(s1): remove node s1 from S1 
• moveNode(s1, s2): move node s1 in S1 to node s2 in S2 
• replaceNode(s1, s2): replace node s1 in S1 with node s2 in S2 
• changeType(s1, toType): change the type of node s1 to toType 
• changeChildrenOrder(s1, toOrder): change the order of the 
children of node s1 to toOrder 
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6.2 Layout Tree Data Structure 
We encode a reconstructed layout structure in a corresponding 
tree. Each widget becomes a leaf node, while each Row or Column 
becomes an internal node. For example, Figure 5 shows the layout 
tree for the reconstructed layout structure of the MS Word “ribbon” 
in Figure 4. Each node stores its properties: widдetId , type , parent , 
children, pathToRoot , hashCode , and childHashCode (detailed de-
scriptions of node properties are given in Appendix D). hashCode 
is defned recursively: for leaf nodes is it hash(widдetId) based on a 
standard hash function, and for internal nodes it is hash(type) + 1 × 
child1.hashCode + 2 × child2.hashCode + 3 × child3.hashCode + ..., 
where child1, child2, child3, etc . are children nodes of the current 
node. Similarly, childHashCode is defned the same as hashCode 
for leaf nodes, and as child1.hashCode XOR child2.hashCode XOR 
child3.hashCode XOR ... for internal nodes. hashCode depends on 
the widget identity for leaf nodes, and the structure type, children 
nodes and their order for internal nodes. Thus, if two nodes in two 
layout specifcations have the same hashCode , then they are identi-
cal with very high likelihood. childHashCode only depends on the 
list of children of an internal node. It can be used to fnd correspond-
ing nodes even if the node type (e.g., changing from Row to Column) 
or the order of children has changed. We defne two hash tables 
to keep track of hashCode and childHashCode : hashMap maps the 
hashCode of a node to the node itself, and childHashMap maps 
from the childHashCode of a node to the node itself. When we 
compare two layout specifcations, these two hash tables are used 
for quickly identifying corresponding nodes in both specifcations 
(See more details in Appendix D). 

6.3 Diference Detection Algorithm 
We detect the diferences between two layout specifcation trees 
(Tree1 and Tree2) and identify edit operations by recursively com-
paring corresponding lists of sibling nodes S1 and S2, with the 
corresponding lists containing child nodes of nodes that have al-
ready been determined to correspond. The basic idea is: we try 
to match nodes in S2 with corresponding nodes in Tree1. When-
ever we have found a correspondence, we compare the respective 
nodes and record edit operations for any diferences in position, 
type, or child order. We identify the corresponding nodes in the 
sibling lists and recursively apply this algorithm to the child nodes 
of corresponding nodes. 

We frst try to detect strong correspondences based on hash 
values to fnd all the nodes s2 ∈ S2 such that there is a node 
s1 ∈ Tree1 with the same hashCode or childHashCode as s2. We 
then identify edit operations based on the diferences between the 
corresponding nodes (for details see Appendix E). We expect most 
s2 ∈ S2 to have a corresponding node s1 ∈ Tree1. Thus, after this 
step, there should only be very few remaining nodes. If we cannot 
fnd corresponding nodes for all the nodes s2 ∈ S2, we pair the 
remaining nodes in both trees based on their similarity. We keep 
pairing the remaining nodes depending on the largest number of 
common leaves and recursively call the algorithm on their child 
nodes (see Appendix F for layout diference detection details). For 
example, in Figure 2 c, we identify move behaviors after detecting 
corresponding nodes in the two layout trees and comparing the 
node position diferences. 

As most nodes typically can be easily paired based on their 
hashCode and childHashCode , ReverseORC takes roughly linear 
time to process such nodes. Very few remaining nodes need to be 
paired based on similarities. Thus, the overall complexity of the 
layout diference detection algorithm is linear in practice for all 
GUI layouts we have tested. 

7 ORC LAYOUT SPECIFICATION 
GENERATION 

Based on the layout diferences, ReverseORC infers layout behaviors 
and constructs corresponding ORC layout specifcations, enabling 
later modifcation and customization. We use a pattern matching ap-
proach to fnd ORC Layout patterns that can describe the detected 
edit operations. Because layouts generally change incrementally, 
the set of detected edit operations usually only contains a small 
number of edit operations. These edit operations indicate the small-
est changes in the UI and thus have a clear mapping to layout 
patterns, which enables us to perform precise pattern matching. 

7.1 ORC Layout Pattern Matching 
ORC Layout [30] is one of the most fexible layout specifcation 
mechanisms that does not involve writing code. It comes with a set 
of layout patterns that can be used to specify common – and also 
several not so common – layout behaviours. By iterating over the 
layout transitions that we identifed earlier on in the grid search, and 
considering each of the change sets identifed by the tree diference 
detection, we identify and record ORC Layout patterns that can 
elicit the observed changes. We start with the specifcation of the 
UI at its maximum size, and iterate ‘inwards’ (right and up) over 
the samples and their change sets towards a UI’s minimum size, i.e., 
in a way that describes a gradual change from the maximum to the 
minimum layout. For example, in the grid from Figure 3, change 
sets are considered in the following order: (Max) to (4) to (1), (Max) 
to (5) to (3) to (6), (3) to (8), (5) to (2) to (7) to (Min). 

In each iteration, we match a layout pattern to the respective 
change set and generalise the layout specifcation to include the 
respective pattern. The mapping between the edit operations in 
the change sets and the patterns is fairly direct, so patterns can be 
found by iterating over the edit operations and testing each pattern 
for applicability in a rule-based manner. If a pattern is applicable, 
we adjust our ORC layout specifcation to include the respective 
pattern. The most common edit operations and their associated 
patterns are as follows: 

removeNode(s1): If s1 is a leaf node, then s1 is an optional widget 
and we change the specifcation to mark it as such (“s1 is either 
there OR not”), using the current layout area (width × height) as 
penalty. As a result, a widget that disappears only when the layout 
gets small will have a small penalty, and the layout solver will im-
plement this expected behavior. If s1 is a non-leaf node, this could 
be a knock-on efect of a fow layout with a Row or Column disap-
pearing. We therefore check whether all the children of s1 have 
been moved away with corresponding moveNode operations. If that 
is not the case, s2 is marked as an optional sublayout. Otherwise, 
we ignore this operation as it will be handled by a diferent rule. 
addNode(s2): This is the inverse case to removeNode(s1) and is han-
dled analogously. If s2 is a non-leaf node, this could be a knock-on 
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Figure 5: Layout tree for the reconstructed layout structure of the MS Word “ribbon” in Figure 4. 

efect of a fow layout with a new Row or Column appearing, so we 
test this frst. moveNode(s1, s2): If one or more consecutive nodes 
at the end of one Row / Column are moved to a (possibly new) 
adjacent Row / Column, then we merge Rows / Columns into a 
Horizontal / Vertical Flow. Otherwise, s1 has an alternative posi-
tion at the location where s2 is, and we specify this by using ORC 
Layout’s alternative position pattern (“s1 is either at position 1 OR 
at position 2”). replaceNode(s1, s2): s1 and s2 are alternative nodes, 
so we use ORC Layout’s alternative layout pattern (“there is either 
s1 OR s2 at that location”). changeType(s1, toType): s1 is marked as 
a pivot sublayout as a Row has changed to a Column or vice versa 
(“s1 is either a Row OR a Column”). changeChildOrder(s1, toOrder): 
s1 has an alternative widget order (“the children of s1 are either 
fromOrder OR toOrder”). 

After we have detected a layout pattern, we use the API pro-
vided by ORC Layout [30, 31] to adjust the layout specifcation 
by instantiating and adding the observed pattern. If no patterns 
can be matched anymore and unmatched edit operations are still 
remaining, then this means that larger parts of the layout structure 
have simply been replaced by diferent layouts, e.g. as shown in 
Figure 6. In this case we fnd the smallest subtree containing the 
respective changes and specify the two alternatives as logical dis-
junction (“either subTree1 OR subTree2”. This is a sign of uncommon 
or drastic changes in the UI, as discussed below. 

For example, in Figure 1, the diference between the frst two 
layouts is that the “Font” button is replaced by its expanded version. 
According to the above rules, the edit operation replaceNode indi-
cates that this is an alternative layout pattern. The “Font” button 
and its expanded version are alternatives. The diference between 
the third and the forth layouts is that the “Styles Pane” button is 
added. As it is a widget (leaf node), the edit operation addNode is 
mapped to an optional widget pattern. 

7.2 Visualizing Reconstructed Layout Quality 
To detect potential resize issues in layouts, designers often need a 
manual process to inspect the huge space of all potential device and 
layout dimensions to verify that there are no problems in the layouts. 

To address this challenge, we propose an error map that uses colors 
to help the designer pinpoint various interface dimensions that 
may be in need of improvement and/or repair. The map enables 
designers to see a visual overview of specifc points in the resize 
space to enable them to quickly target and repair potential areas of 
concern. 

We visualize the quality of the reconstructed layout in an error 
map using three metrics: structural error, transition error, and “fault 
lines”. The size of the error map matches the (scaled) size of the 
maximum layout, and sampled layout sizes correspond to points in 
the map. To defne the structural error of a layout at a certain size, 
we consider the corresponding tabstops of the original layout and 
the corresponding reconstructed layout. The structural error of a 
layout is the sum of the squared diferences between the positions 
of corresponding tabstops, divided by the number of tabstops. As 
illustrated in Figures 1 and 7, the color of the error map at each 
point corresponds to the structural error of the sampled layout, 
with darker shades of yellow indicating larger error and linear 
color gradients flled in between the sampled points. 

As shown in Figure 7, beyond structural error, the error map 
also visualizes the transition error (green / blue), which measures 
the pixel diference between the sizes of the original and the re-
constructed layout at which a certain transition takes place (e.g., 
a widget moving onto a new row): green parts indicate that the 
original GUI transitions at a larger size than the reconstructed GUI, 
and blue parts indicate that the original GUI transitions at a smaller 
size. For example, in the error map in Figure 7, the vertical blue 
area shows the transition error between (Max) and (4). The left 
boundary of the area is the transition position in the original layout 
and the right one is the transition position in the reconstructed 
layout. This area indicates that widget 3 disappears at a (slightly) 
smaller width in the original layout than the reconstructed layout. 
The vertical green area demonstrates the transition error between 
(4) and (1) indicating that widget 2 refows to the next row at a 
(slightly) larger width in the original layout compared to the recon-
structed layout. Analogously, the horizontal blue area shows that 
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Figure 6: Visualization of “fault lines” in the error map of a layout with ‘bad’ (i.e. potentially confusing) behaviors. 

Figure 7: Visualization of reconstruction quality for the example in Figure 3 with an error map. 

widget B disappears at a (slightly) smaller height in the original 
layout between (Max) and (2). 

To highlight layout transitions that are potentially confusing to 
the user, i.e., where widgets switch positions in surprising ways, 
we also identify such “fault” lines. In Figure 6 we show such a prob-
lematic layout, where the fault lines F1 and F2, which correspond 
to the transitions on the left, are shown as black lines in the error 
map on the right. More specifcally, we show fault lines when a) 
widgets are reordered or b) larger parts of the layout structure 
change, as indicated by layout alternatives that cannot be matched 
to common ORC Layout patterns, i.e., where an OR needs to be 
inserted between two whole sublayout alternatives. Fault lines indi-
cate transition positions that might need adjustment in the reverse 
engineered specifcation. In Figure 6, we show a layout with resize 
behaviors that cannot be predicted with common ORC Patterns. 
Both transition positions have fault lines, which illustrate the points 
where an unpredictable behavior occurs and where the layout could 
potentially be improved. Thus, designers could use fault lines as 
guides to identify and fx bad layout behaviours, e.g., by modifying 
the generated ORC layout specifcation. For example, this layout 
could be changed to a horizontal fow layout to exhibit better resize 
behavior. 

8 APPLICATIONS 
It is often time-consuming for designers to create new resizable UIs 
from scratch. Sometimes a designer might fnd a UI that is similar 
to what they are looking for. ReverseORC can help designers to 
reconstruct ORC Layout specifcations for existing UIs and then 
use those specifcations in other applications and on other plat-
forms. In the following, we briefy discuss this for the MS Word 
“ribbon” GUI and the BBC News website, which both use highly 
dynamic layouts. Furthermore, we briefy discuss how ReverseORC 

can help designers to modify, extend and even create resizable GUIs 
by example. 

8.1 GUI Reverse Engineering – MS Word 
Ribbon 

ReverseORC can be used on dynamic, hand-coded GUI layouts, 
such as the well-known MS Word “ribbon” toolbar. In Figure 1, we 
present our reverse engineering result for the “ribbon”. The yellow 
lines in the original UI samples on the left illustrate the layout 
structure results of each sample. The edit operations detected for 
the transitions between them are shown with blue arrows. On the 
right, the corresponding reconstructed UI with its ORC Layout 
patterns are shown, exhibiting the same layout behaviours as the 
original. 

8.2 Web UI Reverse Engineering – BBC News 
ReverseORC enables moving layouts across platforms. Designers 
may want to replicate a web layout in a mobile app or vice versa. 
As our system is platform and framework independent, this means 
that a layout can be re-used in another form of applications, as we 
can unify diferent layouts by reverse engineering. For example, 
we can reverse engineer GUI layouts for the web, and web layouts 
for GUIs. As a demonstration of this, Figure 8 shows the reverse 
engineering result for the BBC News website into a GUI environ-
ment, which opens up options for cross-platform applications. Our 
method works well for webpages that have well-defned and rea-
sonably predictable layout methods, but we cannot claim that our 
method works well for all layout methods that exist on the web. 
Consider for example a tiled layout that rearranges tiles randomly 
upon a resize. In this case, ReverseORC creates a very large layout 
specifcation that contains many OR clauses. 
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Figure 8: Reverse engineering result for the BBC News website, displayed as an ORC Layout GUI. One Horizontal Flow pattern 
was omitted in the fgure for space reasons. 

8.3 Exemplar-Based Layout Design 
The layout diference detection and ORC layout pattern matching 
parts of ReverseORC can be used to reverse engineer desired layout 
behaviors and generate resizable GUIs based on examples, e.g., 
multiple diferent sizes of a static GUI layout drawn by a visual 
designer. Given multiple such static GUI layouts drawn by a visual 
designer for diferent window sizes, ReverseORC detects layout 
diferences among the static exemplar layouts and infers an ORC 
layout that matches the drawn layout results and the designer’s 
intention (Figure 9). 

If the results do not match the designer’s expectations, they can 
iteratively draw new exemplars, or change their existing exemplars, 
and ReverseORC’s diference detection will pick up the diferences 
and change the layout specifcation accordingly. This can be used, 

for example, to disambiguate some layout behaviors by providing 
more examples, or add extra transitions for a smoother resize be-
haviour. The designer could pick a respective size by clicking on 
the error map, and then modify or replace the UI for the chosen 
size in a UI builder-like interface. 

Similarly, manual exemplars can be combined with exemplars 
that are sampled automatically. For example, in Figure 1, the tran-
sition at the fault line between layout four and fve rearranges 
two sublayouts in a fairly arbitrary manner to use available width. 
Upon seeing the fault line, a designer could manually re-draw lay-
out fve, e.g. in a manner that re-arranges the widgets according 
to a fow layout. ReverseORC would then create a Flow pattern for 
the transition and the fault line would disappear. 
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Figure 9: Given multiple diferent sizes of a static GUI layout drawn by a visual designer, ReverseORC can generate an ORC 
layout specifcation based on the patterns inferred from the drawn layout results. The two fgures on the right show the results 
of resizing the GUI reconstructed from the left two window sizes. 

9 DISCUSSION 
ReverseORC is an implementation- and platform-independent re-
verse engineering approach to detect layout behaviors and types 
and to generate a matching high-level ORC Layout specifcation for 
a given layout. It enables the creation of responsive, fexible layouts 
for existing and new applications. ReverseORC is an efcient tool; 
it took only about 0.4 seconds to reverse engineer the MS word 
“Ribbon” toolbar and about 0.5 second for the BBC News website 
on an average laptop computer. It can be used as part of the design 
process for making existing UIs more fexible, to fx problems in 
existing GUIs, and in developing completely new GUIs. In efect, we 
can deal with most layout methods, including fow, grid, grid-bag, 
and ORC layouts. One caveat is that we currently cannot recon-
struct some of the numerical parameters infuencing a layout, such 
as the weights in grid-bag layouts and their ability to center content. 
This is a topic for future work. 

Developers interact with ReverseORC by editing UI exemplars 
(Section 8.3). Such editing of a UI’s appearance has been well stud-
ied [60, 73] and found to be developer-friendly, especially when 
compared to specifying interactive behaviors directly [46]. Similar 
to Expresso [33], ReverseORC developers also specify UI exemplars 
simply by dragging and resizing elements, and this was already 
demonstrated to be easy and useful by Expresso. The usefulness of 
the resulting ORC specifcations has been validated in [30, 31]. 

A drawback of using accessibility APIs to extract widget informa-
tion is that in some applications, not all the widgets might provide 
accessibility APIs. Hybrid techniques combining pixel-based meth-
ods and accessibility API could further improve the accuracy of 
widget detection [27]. For websites, sampling is predominantly a 
one-dimensional problem as window widths are much more im-
portant. Due to the afordance of vertical scrolling, heights are 
relatively less relevant. Thus, instead of a binary grid search, a 

simpler approach for website layouts might be to sample diferent 
widths through a one-dimensional binary interval search. 

If the designer or the implementer of a layout manager made a 
severe mistake when a GUI was designed, which causes unexpected 
widget placement to occur in a layout, e.g., an optional widget that 
“fickers in and out” during resizing, then our framework will typ-
ically create many alternative patterns – since our ReverseORC 
approach can only detect known layout types and patterns. While 
this is a fundamental limitation of our approach, it is not an algo-
rithmic one, as we are in this case not dealing with well-defned 
layout behaviors. On other other hand, our approach could also be 
used as a sanity test for layouts to detect bugs and/or unexpected 
behaviors, as fault lines would appear in the error map for many 
such behaviors. The user can then use the results of our algorithm to 
replace unexpected behaviors in the layout with more deterministic 
and predictable patterns. 

10 CONCLUSION AND FUTURE WORK 
We presented ReverseORC, a novel layout reverse engineering 
method that reconstructs layout specifcations for existing UIs, 
considering not only the static structure of the original but also 
its dynamic resize behaviors. By sampling layout sizes with a 
binary grid search, ReverseORC detects topological diferences 
between layouts of diferent sizes, further infers layout behav-
iors, and generates a corresponding ORC Layout specifcation 
to enable layout customization and generation of new UIs. To 
our knowledge, ReverseORC is the frst approach for reverse en-
gineering dynamic resizable layouts and generating a platform 
independent high-level layout specifcation for them. We envi-
sion that our method could be widely applied in various appli-
cations and platforms. ReverseORC is available as open source from 
https://github.com/YueJiang-nj/ReverseORC-CHI2021. 

https://github.com/YueJiang-nj/ReverseORC-CHI2021
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ReverseORC: Reverse Engineering of Resizable User Interface Layouts with OR-Constraints 

Algorithm 1: Tabstop Creation 

1 Function TabstopCreation(L) 
2 xtabs : (Z → X-Tabstop) = {0 7→ L.leftTab, L.width 7→ 

L.riдhtTab}
3 ytabs : (Z → Y-Tabstop) = {0 7→ L.topTab, L.heiдht 7→ 

L.bottomTab}
4 for w ∈ L.Widgets do 
5 if w .left ∈ Domain(xtabs) then 
6 w .leftTab ← xtabs(w .left)
7 end 
8 else 
9 xtabs ← xtabs ∪ {w .left 7→ w .leftTab}

10 end 
11 Process right, top, bottom tabstops analogously. 
12 end 
13 return xtabs , ytabs 
14 end 

A TABSTOP CREATION 
For each layout L, we defne tabstops through two functions xtabs()
and ytabs() that map from positions in the GUI to tabstop variables 
in the layout (Algorithm 1). We defne xtabs as a function mapping 
from x-coordinates to x-tabstops. Initially, it contains two elements 
that map the leftmost x-position in the GUI to the left tabstop 
variable of the layout and correspondingly for the right (Line 2). 
ytabs is the analogous mapping for y-coordinates to y-tabstops 
(Line 3). 

Line 4-12 show how we loop through all the widgets in the GUI 
to create mappings to the two tabstop functions xtabs and ytabs . 
We check if the x-coordinate of the current widget’s left boundary 
w .left is contained in the domain of xtabs, i.e., this x-coordinate 
w .left is already mapped to an existing x-tabstop in the function 
xtabs (Line 5). In practice, there might be some small displacements 
in the layout. For example, a widget might be displaced by a pixel 
due to a rounding error. Then it is unreasonable to add two tabstops 
with a one-pixel distance in between. Thus, instead of checking 
whether w .left is in the domain of the function xtabs , we can check 
whether there exists an x-coordinate xpos in xtabs that is within a 
tolerance value ϵ . If so, we map w .leftTab to xtabs(w .le f t) to elim-
inate near-duplicate tabstop variables and near-identical mappings 
in the function xtabs (Line 6). If w .left could not be mapped to a tab-
stop variable in the function xtabs , then we insert a new mapping 
from the x-coordinate w .left to the tabstop variable w .leftTab (Line 
9). We process all three other boundaries of each widget (right, top, 
bottom) analogously. 

In the end, the algorithm yields the fnal xtabs and ytabs func-
tions. Also, we now have four unique tabstop variables for each 
widget in the layout. 

B TABSTOP LAYOUT DIVIDERS 
We defne a tabstop as a tabstop layout divider if it is a clean cut 
dividing the layout into two parts where the tabstop does not cross 
any widget in the layout. For a horizontal tabstop layout divider, 

CHI ’21, May 8–13, 2021, Yokohama, Japan 

Algorithm 2: Tabstop Layout Dividers 
1 Function GetTabstopLayoutDividers(tabs, widgets, xy) 
2 tabValues ← sorted(tabs .keys())[1 : −1]
3 tabstopLayoutDividers ← [] 
4 for tabValue ∈ tabValues do 
5 divideLayout ← True 
6 for w ∈ widдets do 
7 if xy == ”x” then 
8 minBoundary ← w .le f t 
9 maxBoundary ← w .riдht 

10 end 
11 if xy == ”y” then 
12 minBoundary ← w .top 
13 maxBoundary ← w .bottom 
14 end 
15 if minBoundary < tabValue and 

maxBoundary > tabValue then 
16 divideLayout ← False 
17 end 
18 end 
19 if divideLayout == True then 
20 tabstopLayoutDividers ← 

tabstopLayoutDividers ∪ {tabValue}
21 end 
22 end 
23 return tabstopLayoutDividers 
24 end 

all the widgets in the layout are either above it or below it, anal-
ogously for vertical tabstop layout dividers. We frst get all the 
tabstops that divide the layout into two parts (Line 2). Then we 
loop over each of these tabstops, we check if all the widgets in the 
layout have minimum boundary greater than the tabstop value or 
maximum boundary less than the tabstop. (For the x-axis, the mini-
mum boundary of a widget is its left boundary and the maximum 
its right boundary, while for y-axis, they are the top and bottom 
boundaries respectively.) If so, the tabstop is a clean cut for the 
layout, and thus a tabstop layout divider (Line 4-22). 

C LAYOUT STRUCTURE RECONSTRUCTION 
We reconstruct the layout structure by recursively subdividing it 
based on layout dividers (Algorithm 3). As the basic case in this 
recursion, if the current sublayout only contains a single widget, 
we simply return its identity (Line 1). Otherwise, we frst try to 
subdivide the layout using vertical layout dividers (Line 3-4). If such 
subdivision is possible (Line 6), then we sort all the widgets in the 
layout by their bottom boundary positions (Line 8). We then assign 
the widgets to diferent sublayouts based on the positions of the 
horizontal layout dividers, and recursively use the reconstruction on 
each sublayout structure (Line 9-19). We merge two layout dividers 
into one if there is no widgets between them (Line 11). 

We aim to reconstruct the simplest possible layout structure. 
Therefore, to avoid creating layout dividers caused by accidental 
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Algorithm 3: Layout Structure Construction 

1 Function ConstructLayoutStructure(L) 
2 if layout is a single widget, return it 
3 xtab,ytab ← TabstopCreation(L) 
4 ytabLayoutDividers ← 

GetTabstopLayoutDividers(ytab, L.widgets, "y") 
5 layoutStructure ← {”Column” : []} 
6 if ytabLayoutDividers not empty then 
7 widдetList ← [] 
8 widдetsCurr ← L.widдets sorted by w .bottom 
9 for tabValue ∈ ytabLayoutDividers do 
10 sublayoutWidgets ← {w |w ∈ 

widдetsCurr ∧ w .bottom ≤ tabValue}
11 if sublayoutWidgets is empty, then continue 
12 layoutStructure[”Column”] ← 

layoutStructure[”Column”] ∪ 
{ConstructLayoutStructure(Layout(
sublayoutWidgets))} 

13 widдetList ← widдetList ∪ {sublayoutWidgets}
14 widдetsCurr ← 

widдetsCurr − sublayoutWidgets 
15 end 
16 if widдetsCurr not empty then 
17 layoutStructure[”Column”] ← 

layoutStructure[”Column”] ∪ 
{ConstructLayoutStructure(Layout(
sublayoutWidgets))} 

18 widдetList ← widдetList ∪ {widgetsCurr}
19 end 
20 layoutStructure[”Column”][i : j] ← 

ConstructLayoutStructure(Layout(
merдe(widдetList[i : j]))) if possible simplifed 
structure exists for any 
0 ≤ i < j < len(layoutStructure[”Column”])

21 return layoutStructure 
22 end 
23 process xtab analogously 
24 if no subdivision is possible, then return L 
25 end 

alignments, we regroup widgets in multiple consecutive sublayouts 
and try running the algorithm recursively to simplify the result-
ing layout structure. We reconstruct the sublayout if we can get a 
simplifed sublayout structure by grouping them (Line 20). We try 
horizontal subdivision (with vertical layout dividers) frst as it is 
more common and in line with reading order. If horizontal subdi-
vision is not possible, we process vertical subdivision analogously 
(Line 23). If both cases are impossible, which is very rare as UIs 
are typically laid out using a division-based containment hierarchy, 
then the layout can only be described using tabstops directly (Line 
24), e.g., in a pinwheel layout [74]. Figure 4 shows the visualization 
of the constructed layout structure of the MS Word “ribbon”. 

Yue Jiang, Wolfgang Stuerzlinger, Christof Luteroth 

Algorithm 4: Identical Node Detection 

1 Function DetectIdenticalNode(S1Curr, S2Curr) 
2 for s2 ∈ S2Curr do 
3 if s2.hashCode ∈ S1HashMap.keys() then 
4 S1Curr ← S1Curr − s1 if s1 ∈ S1 
5 S2Curr ← S2Curr − s2 
6 if s1 < S1 then 
7 chanдes += {moveNode(s1, s2)} 
8 end 
9 else 
10 pairs ← pairs ∪ {s2 7→ s1}
11 end 
12 end 
13 end 
14 end 

D NODE PROPERTIES 
Based on the resulting layout tree structure of an input layout spec-
ifcation gotten from Algorithm 3, we traverse this tree structure 
and create a corresponding new tree. Each widget becomes a leaf 
node, while each Row or Column structure becomes an internal 
node (non-leaf node). Each node stores the following properties: 

• widдetId / type: 
- leaf nodes: widget identifer 
- internal nodes: structure type (either ”Row” or ”Column”) 

• parent : parent node of the current node 
• children: the list of children nodes of the current node 
• pathToRoot : a list of tuples containing the ancestors of the 
current node along with the positions among their siblings, 
(e.g., If pathToRoot of the current node is [(Root , 2), (A, 3), 
(B, 4)], then A is the 2nd child of the Root node, B is the 3rd 
child of A, and the current node is the 4th child of B.) 

• leaves: the list of all the leaves in the subtree rooted at the 
current node 

• hashCode: 
- leaf nodes: hash(widдetId) based on a standard hash 

function 
- internal nodes: hash(”Row”/”Column”)
+ 1 × child1.hashCode + 2 × child2.hashCode 
+ 3 × child3.hashCode + ..., 
where child1, child2, child3, etc . are children nodes of the 
current node 

• childHashCode: 
- leaf nodes: same as hashCode 
- internal nodes: child1.hashCode XOR child2.hashCode 

XOR child3.hashCode XOR ..., where child1, child2, etc . are 
children nodes of the current node 

E IDENTIFYING CORRESPONDING NODES 
To identify corresponding nodes in the sibling lists S1 and S2, we 
frst loop over the S2Curr list to fnd all the nodes s2 ∈ S2 such 
that there is a node s1 ∈ Tree1 with the same hashCode as s2 
(Algorithm 4). If the corresponding node s1 does not belong to 
S1, then s1 moved to S2 at the position it occurs in S2 (Line 6-8). 
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Algorithm 6: Layout Diference Detection Algorithm 5: Similar Node Detection 

1 Function DetectSimilarNodes(S1Curr, S2Curr) 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

for s2 ∈ S2Curr do 
if s2.childHashCode ∈ S1ChildHashMap.keys()

then 
S1Curr ← S1Curr − s1 if s1 ∈ S1 
S2Curr ← S2Curr − s2 
if s1 < S1 then 

chanдes ← chanдes ∪ {moveNode(s1, s2)} 
end 
else 

pairs ← pairs ∪ {s2 7→ s1}
end 
if s1.type , s2.type then 

chanдes ← chanдes ∪ 
{chanдeType(s1, s1.type, s2.type)} 

end 
if s1.children , s2.children then 

chanдes ← chanдes ∪ 
{chanдeChildrenOrder (s1, s1.children, s2.children)} 

end 
end 

end 
20 end 

Otherwise, we pair a1 and s2 in sibling lists (Line 10). We expect 
most s2 ∈ S2 have its corresponding node s1 ∈ Tree1. Thus, after 
this step, S2Curr list should only contain very few nodes. Similarly, 
for all the remaining nodes s2 ∈ S2Curr , we check whether there is 
a node s1 ∈ Tree1 with same childHashCode as s2, and pair them 
accordingly (Algorithm 5 Line 2-11). In addition, we identify type 
changes and children node order changes (Line 12-17). 

F LAYOUT DIFFERENCE DETECTION 
We detect the diferences between two layout specifcations and 
identify edit operations by recursively comparing corresponding 
lists of sibling nodes S1 and S2 (Algorithm 6), with the correspond-
ing lists containing child nodes of nodes that have already been 
determined to correspond. The basic idea is: we try to match cor-
responding nodes in S2 with nodes in Tree1. Whenever we have 
found a correspondence, we compare the respective nodes and 
record edit operations for any diferences in position, type or child 
order. Initially, the inputs of the layout diference detection algo-
rithm are S1 = [root node of Tree1] and S2 = [root node of Tree2], 
where Tree1 and Tree2 are the trees representing the two layout 
specifcations. We then identify the corresponding nodes in the 
sibling lists and recursively apply this algorithm to the children 
nodes of corresponding nodes. As we fnd corresponding nodes, we 
specify their diferences (if any) as edit operations and add them to 
a set changes. In each call, we maintain a hash table pairs mapping 
nodes in S2 to corresponding nodes in S1; with pairs initially empty 
(Line 2). We keep track of currently unpaired nodes by removing 
the paired nodes from the lists S1 and S2 once a pair has been found. 
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18 
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28 
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40 

node’s hash values in IdenticalNodeDetection and DetectSimilarN-
odes. These methods loop over S2Curr to fnd all the nodes s2 ∈ S2 
such that there is a node s1 ∈ Tree1 with the same hashCode or 

Function LayoutDiferenceDetection(S1, S2) 
pairs ← {} // hash table from nodes in S2 to nodes in S1 
S1Curr ← S1 
S2Curr ← S2 
DetectIdenticalNodes(S1Curr , S2Curr ) // fnd and pair S2 
nodes that are identical to Tree1 nodes 
DetectSimilarNodes(S1Curr , S2Curr ) // fnd and pair S2 
nodes that have the same leaves as Tree1 nodes 
while S2Curr not empty do 

(s1Best , s2Best) ← (s1 ∈ S1, s2 ∈ S2) s.t. max 
number of common leaves 

maxSim ← numCommonLeaves(s1Best , s2Best)
if maxSim > 0 then 

S1Curr ← S1Curr − s1 
S2Curr ← S2Curr − s2 
pairs ← pairs ∪ {s2Best 7→ s1Best }
if s1Best .type , s2Best .type then 

chanдes ← chanдes ∪ 
{chanдeType(s1Best , s2Best .type)} 

end 
LayoutDiferenceDetection(s1Best .children, 
s2Best .children)

end 
else 

break 
end 

end 
S1Paired ← [s1 f or s1 ∈ S1 i f s1 ∈ pairs .values()]
S2Paired ← [s2 f or s2 ∈ S2 i f s2 ∈ pairs .keys()]
Replace s2 ∈ S2Paired by pairs[s2]
if S1Paired , S2Paired then 

chanдes ← chanдes ∪ 
{chanдeChildrenOrder (s1.parent , S2Paired)} 

end 
if num of paired nodes before s1 ∈ S1 = num of paired 
nodes before s2 ∈ S2 then 

S1Curr ← S1Curr − s1 
S2Curr ← S2Curr − s2 
chanдes ← chanдes ∪ {replaceNode(s1, s2)} 

end 
for s1 ∈ S1Curr do 

chanдes ← chanдes ∪ {removeNode(s1)} 
end 
for s2 ∈ S2Curr do 

chanдes ← chanдes ∪ {addNode(s2)} 
end 

end 

We frst try to detect strong correspondences based on a 
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childHashCode as s2. If the corresponding node s1 does not belong 
to S1, then s1 moved to S2 at the position it occurs in S2. Other-
wise, we pair a1 and s2 in sibling lists. In addition, we identify type 
changes and also children node order changes (Details see Appen-
dix Section E). We expect most s2 ∈ S2 have its corresponding node 
s1 ∈ Tree1. Thus, after this step, S2Curr list should only contain 
very few nodes. 

If we cannot fnd corresponding nodes for all the nodes s2 ∈ 
S2Curr , we pair the remaining nodes in S1Curr and S2Curr based 
on their similarity. We keep pairing (s1 ∈ S1Curr , s2 ∈ S2Curr )
depending on the largest number of common leaves and recursively 
call the algorithm on their children nodes. We stop this pairing 

Yue Jiang, Wolfgang Stuerzlinger, Christof Luteroth 

process when there is no node remaining in S2Curr or all the 
s1 ∈ S1Curr and s2 ∈ S2Curr have no common leaves (Algorithm 6 
Line 7-22). In addition, we check whether the order of all the paired 
nodes has not changed in S1 and S2 (Line 23-28). 

After all the above pairing operations, S1Curr and S2Curr con-
tain all the nodes that cannot be paired with any node in the other 
layout tree. If s1 ∈ S1Curr and s2 ∈ S2Curr have the same relative 
position among their sibling nodes, i.e., the number of paired nodes 
before them are the same, then we infer that s1 in S1 is replaced by 
s2 in S2 (Line 29-33). All the remaining s1 ∈ S1Curr are removed 
from S1 and s2 ∈ S2Curr are added in S2 (Line 34-39). 
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