
API for ORCSolver: An Efficient Solver for Adaptive GUI
Layout with OR-Constraints

Yue Jiang1 Wolfgang Stuerzlinger2 Matthias Zwicker1 Christof Lutteroth3

1Department of Computer Science, University of Maryland, College Park, MD, USA
2School of Interactive Arts + Technology (SIAT), Simon Fraser University, Vancouver, BC, Canada

3Department of Computer Science, University of Bath, Bath, UK
{yuejiang, zwicker}@cs.umd.edu w.s@sfu.ca c.lutteroth@bath.ac.uk

ABSTRACT
We provide an application programming interface (API) to
formalize GUI layouts that can be solved at interactive rates
by our solver and also enable users to efficiently create lay-
outs. Our API mainly contains the classes for ORCLayout
(Abstract), ORCWidget, Pivot, ORCColumn, ORCRow, Flow,
HorizontalFlow, VerticalFlow, FlowAroundFix. We only in-
clude public classes, methods, and parameters in this docu-
ment.

In addition, we also provide some examples to show how to
specify layouts with API.

CLASS ORCLAYOUT [ABSTRACT CLASS]
An abstract class to define all the sub-layouts

@param name: the name of the sub-layout

@param parent: the parent sub-layout of this sub-layout

@param weight: the weight (priority) of the sub-layout (de-
fault: 1)

set_weight(float weight)
Sets the weight of the sub-layout which represents the priority
of the sub-layout.

@param weight: the weight (priority) of the widget

constraint_spec() [Abstract Method]
Constructs the constraint system including optimization vari-
ables, constraints, and objective functions for this layout.

solve()
Solves the constraint systems for sub-layouts recursively. We
perform the branch-and-bound algorithm through recursive
calls, so in the end, we only need to call root.solve() to per-
form the algorithm, where root is the root of the branch-and-
bound tree.

CHI’20, April 25–30, 2020, Honolulu, HI, USA

ACM ISBN 978-1-4503-6708-0/20/04. . . $15.00

DOI: https://doi.org/10.1145/3313831.XXXXXXX

get_best()
Gets the best solution for the layout after solve() is called.

@return best_leaf: the leaf node containing the best solution
in the branch-and-bound tree

@return best_leaf_result: the best solution for the layout

@return best_leaf_loss: the loss value of the best solution for
the layout

CLASS ORCWIDGET (EXTENDS ORCLAYOUT)
Defines a widget or a sub-layout if the sub-layout only contains
one widget.

@param name: the name of the sub-layout

@param width_and_height: the min/pref/max width and
height of the widget

@param parent: the parent sub-layout of this sub-layout

@param optional: True if the widget is optional in the layout

set_optional()
Sets the widget to be optional, which can be removed if there
is not enough space for it.

CLASS PIVOT (EXTENDS ORCLAYOUT)
Specifies an OR constraint that may flip the orientation of a
layout from horizontal to vertical, or vice versa. Meanwhile,
it also switches between horizontal and vertical flows in the
sub-layouts.

@param name: the name of the sub-layout

@param parent: the parent sub-layout of this sub-layout

@param window_width: window width (default: None)

@param window_height: window height (default: None)

set_layout(column_or_row)
If the input is column, then column has higher priority than
row when the losses are the same.

@param column_or_row: the layout Pivot wants to switch

1

https://doi.org/10.1145/3313831.XXXXXXX

CLASS ORCCOLUMN (EXTENDS ORCLAYOUT)
Constructs a Column layout dividing the whole window into
different areas as a column. A Column is a rectangular vertical
arrangement of sub-layouts.

@param name: the name of the sub-layout

@param parent: the parent sub-layout of this sub-layout

@param window_width: window width (default: None)

@param window_height: window height (default: None)

define_sublayouts(sublayouts)
Defines the sub-layouts contained in the column.

@param sublayouts: the set of sub-layouts contained in the
column

CLASS ORCROW (EXTENDS ORCLAYOUT)
Constructs a Row layout dividing the whole window into dif-
ferent areas as a row. A Row is a rectangular horizontal ar-
rangement of sub-layouts.

@param name: the name of the sub-layout

@param parent: the parent sub-layout of this sub-layout

@param window_width: window width (default: None)

@param window_height: window height (default: None)

define_sublayouts(sublayouts)
Defines the sub-layouts contained in the row.

@param sublayouts: the set of sub-layouts contained in the
row

CLASS FLOW [ABSTRACT CLASS] (EXTENDS ORCLAY-
OUT)
An abstract class to Construct a flow sub-layout.

@param name: the name of the sub-layout

@param widget_list: widgets to flow in this sub-layout

@param parent: the parent sub-layout of this sub-layout

@param balanced: True if we want the flow to be balanced.

@param fixed_boundary: True if all the boundaries are fixed
for this flow sub-layout. (default: False)

@param boundary_distance: when fixed_boundary is True, if
the flow is horizontal, then the distance is the distance between
top boundary and bottom boundary, and if the flow is vertical,
then the distance is the distance between left boundary and
right boundary. (default: None)

connect_to_flow(other_flow)
Sets the connected flow the current flow connects to.

@param other_flow: the flow which the current flow connects
to

Figure 1. The formalization and corresponding code for a Column lay-
out which divides the window into a horizontal flow and a Row layout
containing a vertical flow and a text box.

solve() [Method overriding]
Solves the constraint systems for sub-layouts recursively. We
perform the branch-and-bound algorithm through recursive
calls. We override the method in the class ORCLayout to allow
creating branches in the branch-and-bound tree.

CLASS HORIZONTALFLOW (EXTENDS FLOW)
Defines a horizontal flow sub-layout which uses heuristics in
our ORCSolver to solve the horizontal flow sub-layout.

CLASS VERTICALFLOW (EXTENDS FLOW)
Defines a vertical flow sub-layout which uses heuristics in our
ORCSolver to solve the vertical flow sub-layout.

CLASS FLOWAROUNDFIX (EXTENDS FLOW)
Defines a flow sub-layout where all the widgets flows around
a fixed area. It uses heuristics in our ORCSolver to solve the
flow sub-layout.

@param name: the name of the sub-layout

@param widget_list: widgets to flow in this sub-layout

@param parent: the parent sub-layout of this sub-layout

EXAMPLES
The layout in Figure 1 can be formalized as Col-
umn(HorizontalFlow, Row(VerticalFlow, TextBox)). The lay-
out uses a Column layout dividing the window into a horizontal
flow and the lower part which is a Row layout containing a
vertical flow and a text box.

The layout in Figure 2 can be formalized as
Pivot(Column(HorizontalFlow, TextBox)). The Pivot
pattern can turn horizontal arrangements into vertical ones.
The layout uses a Column with a horizontal flow, e.g., of
toolbar widgets. The flow is normally placed above the
text box, i.e., toolbar at the top. Because of the Pivot, the
layout solver can turn the Column into a Row and at the
same time, turn the horizontal flow into a vertical one, i.e.,
toolbar on the left. Given this layout formalization, the
solver can break the layout down into two alternatives, i.e.,

2

Figure 2. The formalization and corresponding code for a Pivot layout
which can switch between top toolbar and left toolbar.

Column(HorizontalFlow, TextBox) OR Row(VerticalFlow,
TextBox).

3

	class ORCLayout [Abstract Class]
	set_weight(float weight)
	constraint_spec() [Abstract Method]
	solve()
	get_best()

	class ORCWidget (extends ORCLayout)
	set_optional()

	class Pivot (extends ORCLayout)
	set_layout(column_or_row)

	class ORCColumn (extends ORCLayout)
	define_sublayouts(sublayouts)

	class ORCRow (extends ORCLayout)
	define_sublayouts(sublayouts)

	class Flow [Abstract Class] (extends ORCLayout)
	connect_to_flow(other_flow)
	solve() [Method overriding]

	class HorizontalFlow (extends Flow)
	class VerticalFlow (extends Flow)
	class FlowAroundFix (extends Flow)
	Examples

